H11N1M

6-Pin DIP Schmitt Trigger Output Optocoupler

The H11N1M has a high-speed integrated circuit detector optically coupled to an aluminium gallium arsenide (AlGaAs) infrared emitting diode. The output incorporates a Schmitt trigger, which provides hysteresis for noise immunity and pulse shaping. The detector circuit is optimized for simplicity of operation and utilizes an open-collector output for maximum application flexibility.

Features

- High Data Rate, 5 MHz Typical (NRZ)
- Free from Latch-up and Oscillation Throughout Voltage and Temperature Ranges
- Microprocessor Compatible Drive
- Logic Compatible Output Sinks 16 mA at 0.5 V Maximum
- Guaranteed On/Off Threshold Hysteresis
- Wide Supply Voltage Capability, Compatible with All Popular Logic Systems
- Safety and Regulatory Approvals:
- UL1577, 4,170 VACRMS for 1 Minute
- DIN-EN/IEC60747-5-5, 850 V Peak Working Insulation Voltage

Applications

- Logic-to-Logic Isolator
- Programmable Current Level Sensor
- Line Receiver - Eliminate Noise and Transient Problems
- AC to TTL Conversion - Square Wave Shaping
- Interfaces Computers with Peripherals
- Isolated Power MOS Driver for Power Supplies

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION
See detailed ordering, marking and shipping information on page 5 of this data sheet.

Table 1. SAFETY AND INSULATION RATINGS As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter	Characteristics	
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated Mains Voltage	<150 V $_{\text {RMS }}$	I-IV
	<300 V $_{\text {RMS }}$	I-IV
Climatic Classification	$55 / 100 / 21$	
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index	175	

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {PR }}$	Input-to-Output Test Voltage, Method A, $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR }}$, Type and Sample Test with $\mathrm{t}_{\mathrm{m}}=10 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	1360	$\mathrm{~V}_{\text {peak }}$
	Input-to-Output Test Voltage, Method B, $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}$, 100% Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	1594	$\mathrm{~V}_{\text {peak }}$
$\mathrm{V}_{\text {IORM }}$	Maximum Working Insulation Voltage	850	$\mathrm{~V}_{\text {peak }}$
$\mathrm{V}_{\text {IOTM }}$	Highest Allowable Over-Voltage	6,000	$\mathrm{~V}_{\text {peak }}$
	External Creepage	≥ 7	mm
	External Clearance	≥ 7	mm
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥ 10	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.5	mm
$\mathrm{~T}_{\mathrm{S}}$	Case Temperature (Note 1)	175	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\mathrm{S}, \text { INPUT }}$	Input Current (Note 1)	350	mA
$\mathrm{R}_{\text {IO }}$	Output Power (Note 1)	Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{\text {IO }}=500 \mathrm{~V}$ (Note 1)	800

1. Safety limit values - maximum values allowed in the event of a failure.

Table 2. ABSOLUTE MAXIMUM RATINGS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Value	Units

TOTAL DEVICE

$\mathrm{T}_{\text {STG }}$	Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{OPR}}$	Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature	260 for 10 seconds	${ }^{\circ} \mathrm{C}$
P_{D}	Total Device Power Dissipation at $25^{\circ} \mathrm{C}$		
	Derate above $25^{\circ} \mathrm{C}$	210	mW

EMITTER

I_{F}	Continuous Forward Current	30	mA
$\mathrm{~V}_{\mathrm{R}}$	Reverse Voltage	6	V
$\mathrm{I}_{\mathrm{F}}(\mathrm{pk})$	Forward Current - Peak $(1 \mu \mathrm{~s}$ pulse, 300 pps$)$	100	mA
P_{D}	LED Power Dissipation	60	mW

DETECTOR

P_{D}	Detector Power Dissipation	150	mW
$\mathrm{~V}_{\mathrm{O}}$	V_{45} Allowed Range	0 to 16	V
$\mathrm{~V}_{\mathrm{CC}}$	V_{65} Allowed Range	3 to 16	V
I_{O}	I_{4} Output Current	50	mA

[^0] should not be assumed, damage may occur and reliability may be affected.

Table 3. ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
EMITTER						
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.4	2.0	V
		$\mathrm{I}_{\mathrm{F}}=0.3 \mathrm{~mA}$	0.75	1.25		
I_{R}	Reverse Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$			10	$\mu \mathrm{A}$
C_{J}	Capacitance	$\mathrm{V}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$			100	pF

DETECTOR

V_{CC}	Operating Voltage Range		4		15	V
$\mathrm{I}_{\mathrm{CC} \text { (off) }}$	Supply Current	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$		6	10	mA
I_{OH}	Output Current, High	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}$			100	$\mu \mathrm{~A}$

Table 4. TRANSFER CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
$\mathrm{I}_{\mathrm{CC} \text { (on) }}$	Supply Current	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$		6.5	10.0	mA
$\mathrm{~V}_{\mathrm{OL}}$	Output Voltage, Low	$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$,				
$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{F}(\mathrm{on})}$ Maximum						

Table 5. SWITCHING SPEED

Symbol	AC Characteristics	Test Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {on }}$	Turn-On Time	$\begin{aligned} \mathrm{C} & =120 \mathrm{pF}, \mathrm{tp}=1 \mu \mathrm{~s}, \\ \mathrm{R}_{\mathrm{E}} & =(\text { Note 3), Figure } 7 \end{aligned}$		100	330	ns
t_{r}	Rise Time	$\begin{aligned} \mathrm{C} & =120 \mathrm{pF}, \mathrm{tp}=1 \mu \mathrm{~s}, \\ \mathrm{R}_{\mathrm{E}} & =(\text { Note 3), Figure } 7 \end{aligned}$		7.5		ns
$\mathrm{t}_{\text {off }}$	Turn-Off Time	$\begin{gathered} \mathrm{C}=120 \mathrm{pF}, \mathrm{tp}_{\mathrm{p}}=1 \mu \mathrm{~s}, \\ \mathrm{R}_{\mathrm{E}}=(\text { Note 3), Figure } 7 \end{gathered}$		150	330	ns
t_{f}	Fall Time	$\begin{aligned} \mathrm{C} & =120 \mathrm{pF}, \mathrm{t}_{\mathrm{P}}=1 \mu \mathrm{~s}, \\ \mathrm{R}_{\mathrm{E}} & =(\text { Note 3), Figure } 7 \end{aligned}$		12		ns
	Data Rate			5		MHz

Table 6. ISOLATION CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {ISO }}$	Input-Output Isolation Voltage	$\mathrm{t}=1$ Minute	4170			$\mathrm{VAC}_{\mathrm{RMS}}$
$\mathrm{C}_{\text {ISO }}$	Isolation Capacitance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		0.4	0.6	pF
$\mathrm{R}_{\mathrm{ISO}}$	Isolation Resistance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}= \pm 500 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10^{11}			Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Maximum $\mathrm{I}_{\mathrm{F}(\mathrm{on})}$ is the maximum current required to trigger the output. For example, a 3.2 mA maximum trigger current would require the LED to be driven at a current greater than 3.2 mA to guarantee the device will turn on. A 10% guard band is recommended to account for degradation of the LED over its lifetime. The maximum allowable LED drive current is 30 mA .
3. $\mathrm{H} 11 \mathrm{~N} 1: \mathrm{R}_{\mathrm{E}}=910 \Omega$

H11N1M

TYPICAL CHARACTERISTICS

Figure 1. Transfer Characteristics

Figure 3. Threshold Current vs. Temperature

Figure 5. Supply Current vs. Supply Voltage

Figure 2. Threshold Current vs. Supply Voltage

Figure 4. Load Current vs. Output Voltage

Figure 6. LED Forward Current vs. Forward Voltage

H11N1M

TEST CIRCUIT

Figure 7. Switching Test Circuit and Waveforms

Figure 8. Reflow Profile

ORDERING INFORMATION

Part Number	Package	Packing Method
H11N1M	DIP 6-Pin	Tube (50 Units)
H11N1SM	SMT 6-Pin (Lead Bend)	Tube (50 Units)
H11N1SR2M	SMT 6-Pin (Lead Bend)	Tape and Reel (1000 Units)
H11N1VM	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	Tube (50 Units)
H11N1SVM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tube (50 Units)
H11N1SR2VM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tape and Reel (1000 Units)
H11N1TVM	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	Tube (50 Units)

PDIP6 8.51x6.35, 2.54P
CASE 646BX ISSUE O

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

| DOCUMENT NUMBER: | 98AON13449G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP6 8.51X6.35, 2.54P | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

PDIP6 8.51x6.35, 2.54P
CASE 646BY
ISSUE A
DATE 15 JUL 2019

| DOCUMENT NUMBER: | 98AON13450G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP6 8.51x6.35, 2.54P | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

| DOCUMENT NUMBER: | 98AON13451G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP6 8.51X6.35, 2.54P | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Optocouplers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
HCPL-2201-300 TLP558(F) JAN4N24 610737H HCPL2630M HCPL2731SM HCPL2630SM PS9817A-1-F3-AX TLP2766A(E EL816S2(C)(TU)-F TLP281-4 PS9121-F3-AX PS9123-F3-AX HCPL2531S HCPL2631SD HCPL-4661-500E TLP118(TPL,E) TLP5212XGB TLP621-2XGB 4N46-300E JANTXV4N24U SFH6318T 6N135-300E TIL198 TLP2309(TPL,E) TLP2355(TPL,E TLP521-4GR TLP521-4XGB TLP621-4X TLP621XSM IS281-4GB IS181GR ICPL2631 ICPL2630 ICPL2601 TLP714(F) TLP754(F) FOD260LSDV ACPL-M21L-500E ACPL-064L-500E PS2501-1XSM PS2505-1 PS2561L2-1-F3-A PS2913-1-F3-AX PS9821-2-F3-AX FOD0721R2 FODM8061R2V 6N135SDM 6N137SDM 6N138-000E

[^0]: Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality

