### **ON Semiconductor**

### Is Now



To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,



Is Now Part of



# ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.



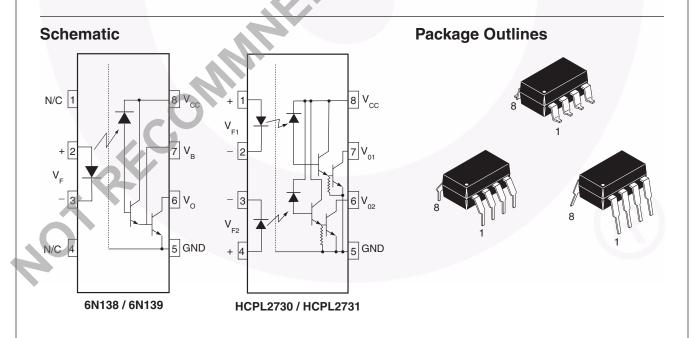
August 2008

Single-Channel: 6N138, 6N139
Dual-Channel: HCPL2730, HCPL2731
Low Input Current High Gain Split
Darlington Optocouplers

#### **Features**

- Low current 0.5mA
- Superior CTR-2000%
- Superior CMR-10kV/µs
- CTR guaranteed 0-70°C
- U.L. recognized (File # E90700)
- VDE recognized (File # 120915) Ordering option V, e.g., 6N138V
- Dual Channel HCPL2730, HCPL2731

### **Applications**


- Digital logic ground isolation
- Telephone ring detector
- EIA-RS-232C line receiver
- High common mode noise line receiver
- µP bus isolation
- Current loop receiver

### **Description**

The 6N138/9 and HCPL2730/HCPL2731 optocouplers consist of an AlGaAs LED optically coupled to a high gain split darlington photodetector.

The split darlington configuration separating the input photodiode and the first stage gain from the output transistor permits lower output saturation voltage and higher speed operation than possible with conventional darlington phototransistor optocoupler. In the dual channel devices, HCPL2730/HCPL2731, an integrated emitter-base resistor provides superior stability over temperature.

The combination of a very low input current of 0.5mA and a high current transfer ratio of 2000% makes this family particularly useful for input interface to MOS, CMOS, LSTTL and EIA RS232C, while output compatibility is ensured to CMOS as well as high fan-out TTL requirements. An internal noise shield provides exceptional common mode rejection of 10 kV/µs.



### **Absolute Maximum Ratings** (T<sub>A</sub> = 25°C unless otherwise specified)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol                           | Parameter                                                                      | Value           | Units       |    |
|----------------------------------|--------------------------------------------------------------------------------|-----------------|-------------|----|
| T <sub>STG</sub>                 | Storage Temperature                                                            |                 | -55 to +125 | °C |
| T <sub>OPR</sub>                 | Operating Temperature                                                          |                 | -40 to +85  | °C |
| T <sub>SOL</sub>                 | Lead Solder Temperature (Wave solder only. See recommendation of SMD mounting) | 260 for 10 sec  | °C          |    |
| EMITTER                          |                                                                                |                 |             |    |
| I <sub>F</sub> (avg)             | DC/Average Forward Input Current                                               | Each Channel    | 20          | mA |
| I <sub>F</sub> (pk)              | Peak Forward Input Current (50% duty cycle, 1 ms P.W.)                         | 40              | mA          |    |
| I <sub>F</sub> (trans)           | Peak Transient Input Current - (≤1µs P.W., 300 pps)                            |                 | 1.0         | Α  |
| V <sub>R</sub>                   | Reverse Input Voltage                                                          | Each Channel    | 5           | V  |
| P <sub>D</sub>                   | Input Power Dissipation                                                        | Each Channel    | 35          | mW |
| DETECTO                          | R                                                                              |                 |             |    |
| I <sub>O</sub> (avg)             | Average Output Current                                                         | Each Channel    | 60          | mA |
| V <sub>ER</sub>                  | Emitter-Base Reverse Voltage                                                   | 6N138 and 6N139 | 0.5         | V  |
| V <sub>CC</sub> , V <sub>O</sub> | Supply Voltage, Output Voltage                                                 | 6N138, HCPL2730 | -0.5 to 7   | ٧  |
|                                  |                                                                                | 6N139, HCPL2731 | -0.5 to 18  |    |
| P <sub>O</sub>                   | Output Power Dissipation                                                       | Each Channel    | 100         | mW |

### **Electrical Characteristics** ( $T_A = 0$ to $70^{\circ}$ C unless otherwise specified)

### **Individual Component Characteristics**

| Symbol                            | Parameter                                        | Test Cond                                                        | Device                   | Min.            | Тур.* | Max. | Unit |       |
|-----------------------------------|--------------------------------------------------|------------------------------------------------------------------|--------------------------|-----------------|-------|------|------|-------|
| EMITTER                           |                                                  | 1                                                                |                          | !               |       |      | Į.   | Į.    |
| V <sub>F</sub>                    | Input Forward Voltage                            |                                                                  | T <sub>A</sub> = 25°C    | All             |       | 1.30 | 1.7  | V     |
|                                   |                                                  | Each channel (I <sub>F</sub> = 1.6                               | SmA)                     |                 |       |      | 1.75 |       |
| BV <sub>R</sub>                   | Input Reverse<br>Breakdown Voltage               | $T_A = 25^{\circ}C, I_R = 10\mu A$                               |                          | All             | 5.0   | 20   |      | V     |
| $\Delta V_F / \Delta T_A$         | Temperature<br>Coefficient of<br>Forward Voltage | I <sub>F</sub> = 1.6mA                                           |                          | All             |       | -1.8 |      | mV/°C |
| DETECTO                           | R                                                |                                                                  |                          |                 |       |      |      |       |
| I <sub>OH</sub>                   | Logic HIGH Output                                | $I_F = 0$ mA, $V_O = V_{CC} =$                                   | 18V                      | 6N139           |       | 0.01 | 100  | μΑ    |
|                                   | Current                                          |                                                                  | Each Channel             | HCPL2731        |       |      |      |       |
|                                   |                                                  | $I_F = 0$ mA, $V_O = V_{CC} =$                                   | 7V                       | 6N138           |       | 0.01 | 250  |       |
|                                   |                                                  |                                                                  | Each Channel             | HCPL2730        |       |      |      |       |
| I <sub>CCL</sub> Logic LOW supply |                                                  | $I_F = 1.6$ mA, $V_O = Oper$                                     | n, V <sub>CC</sub> = 18V | 6N138,<br>6N139 |       | 0.4  | 1.5  | mA    |
|                                   |                                                  | I <sub>F1</sub> = I <sub>F2</sub> = 1.6mA, V <sub>CC</sub> = 18V |                          | HCPL2731        |       | 1.3  | 3    |       |
|                                   |                                                  | $V_{O1} - V_{O2} = Open, V_{C}$                                  | <sub>C</sub> = 7V        | HCPL2730        |       |      |      |       |
| Іссн                              | Logic HIGH Supply                                | $I_F = 0mA, V_O = Open,$                                         | V <sub>CC</sub> = 18V    | 6N138,<br>6N139 |       | 0.05 | 10   | μA    |
|                                   |                                                  | $I_{F1} = I_{F2} = 0 \text{mA}, V_{CC} = 0 \text{mA}$            | = 18V                    | HCPL2731        |       | 0.10 | 20   |       |
|                                   |                                                  | $V_{O1} - V_{O2} = Open, V_{C}$                                  | C = 7V                   | HCPL2730        |       |      |      |       |

#### **Transfer Characteristics**

| Symbol                                       | Parameter                                 | Test Conditions                                                   |                           | Device   | Min. | Тур.* | Max. | Unit          |
|----------------------------------------------|-------------------------------------------|-------------------------------------------------------------------|---------------------------|----------|------|-------|------|---------------|
| COUPLE                                       | D                                         |                                                                   |                           |          |      |       |      |               |
| CTR Current Transfer Ratio <sup>(1)(2)</sup> |                                           | $I_F = 0.5 \text{mA}, V_O = 0.4 \text{ V}, V_{CC} = 4.5 \text{V}$ |                           | 6N139    | 400  | 1100  |      | %             |
|                                              |                                           | Each Channel                                                      | HCPL2731                  |          | 3500 |       | 7    |               |
|                                              | $I_F = 1.6 \text{mA}, V_O = 0.4 ^{\circ}$ | V, V <sub>CC</sub> = 4.5V                                         | 6N139                     | 500      | 1300 |       |      |               |
|                                              |                                           | Each Channel                                                      | HCPL2731                  |          | 2500 |       |      |               |
|                                              | . ( )                                     | $I_F = 1.6 \text{mA}, V_O = 0.4 ^{\circ}$                         | V, V <sub>CC</sub> = 4.5V | 6N138    | 300  | 1300  |      |               |
|                                              |                                           | Each Channel                                                      | HCPL2730                  |          | 2500 |       |      |               |
| V <sub>OL</sub>                              | V <sub>OL</sub> Logic LOW Output          | $I_F = 0.5 \text{mA}, I_O = 2 \text{mA}$                          | , V <sub>CC</sub> = 4.5V  | 6N139    |      | 0.08  | 0.4  | ٧             |
|                                              | Voltage <sup>(2)</sup>                    | I <sub>F</sub> = 1.6mA, I <sub>O</sub> = 8mA                      | , V <sub>CC</sub> = 4.5V  | 6N139    |      | 0.01  | 0.4  |               |
|                                              |                                           |                                                                   | Each Channel              | HCPL2731 |      |       | //1  |               |
| $\bigcirc$                                   |                                           | I <sub>F</sub> = 0.5mA, I <sub>O</sub> = 15m                      | A, V <sub>CC</sub> = 4.5V | 6N139    |      | 0.13  | 0.4  | $\overline{}$ |
|                                              |                                           | Each                                                              | Each Channel              | HCPL2731 | ]    |       |      |               |
|                                              |                                           | $I_F = 12mA, I_O = 24mA$                                          | A, V <sub>CC</sub> = 4.5V | 6N139    |      | 0.20  | 0.4  |               |
|                                              |                                           |                                                                   | Each Channel              | HCPL2731 |      |       |      |               |
|                                              |                                           | $I_F = 1.6 \text{mA}, I_O = 4.8 \text{m}$                         | A, V <sub>CC</sub> = 4.5V | 6N138    |      | 0.10  | 0.4  |               |
|                                              |                                           |                                                                   | Each Channel              | HCPL2730 | 1    |       |      |               |

<sup>\*</sup>All Typicals at  $T_A = 25^{\circ}C$ 

### **Electrical Characteristics** (Continued) ( $T_A = 0$ to $70^{\circ}$ C unless otherwise specified)

Switching Characteristics ( $V_{CC} = 5V$ )

| Symbol             | Parameter                                                           | Test Condi                                                                                      | tions                     | Device               | Min.  | Тур.*  | Max. | Unit     |
|--------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------|----------------------|-------|--------|------|----------|
| T <sub>PHL</sub>   | Propagation Delay                                                   | $R_L = 4.7\Omega$ , $I_F = 0.5$ mA                                                              |                           | 6N139                |       |        | 30   | μs       |
|                    | Time to Logic<br>LOW <sup>(2)</sup> (Fig. 24)                       |                                                                                                 | T <sub>A</sub> = 25°C     |                      |       | 4      | 25   |          |
|                    | , ,                                                                 | $R_L = 4.7\Omega, I_F = 0.5 \text{mA}$                                                          |                           | HCPL2731             |       |        | 120  |          |
|                    |                                                                     | Each Channel                                                                                    | $T_A = 25^{\circ}C$       |                      |       | 3      | 100  |          |
|                    |                                                                     | $R_L = 270\Omega, I_F = 12mA$                                                                   |                           | 6N139                |       |        | 2    |          |
|                    |                                                                     |                                                                                                 | $T_A = 25^{\circ}C$       |                      |       | 0.2    | 1    |          |
|                    |                                                                     | $R_L = 270\Omega, I_F = 12mA, E$                                                                | Each Channel              | HCPL2730             |       |        | 3    |          |
|                    |                                                                     |                                                                                                 | $T_A = 25^{\circ}C$       | HCPL2731             |       | 0.3    | 2    |          |
|                    |                                                                     | $R_L = 2.2\Omega, I_F = 1.6 \text{mA}$                                                          |                           | 6N138                |       |        | 15   | 1        |
|                    |                                                                     |                                                                                                 | $T_A = 25^{\circ}C$       |                      |       | 1.5    | 10   | 1        |
|                    |                                                                     | $R_L = 2.2\Omega, I_F = 1.6 \text{mA}, E$                                                       | Each Channel              | HCPL2731             |       |        | 25   | <u> </u> |
|                    |                                                                     |                                                                                                 | $T_A = 25^{\circ}C$       | HCPL2730             |       | 1      | 20   | 1        |
| T <sub>PLH</sub>   | Propagation Delay<br>Time to Logic<br>HIGH <sup>(2)</sup> (Fig. 24) | $R_L = 4.7\Omega, I_F = 0.5 \text{mA}$                                                          | •                         | 6N139                |       |        | 90   | μs       |
|                    |                                                                     |                                                                                                 | Each Channel              | HCPL2731             |       |        |      |          |
|                    |                                                                     | $R_L = 4.7\Omega$ , $I_F = 0.5 \text{mA}$ , $T_R = 0.5 \text{mA}$                               | T <sub>A</sub> = 25°C     | 6N139                |       | 12     | 60   |          |
|                    |                                                                     |                                                                                                 | Each Channel              | HCPL2731             |       | 22     |      |          |
|                    |                                                                     | $R_L = 270\Omega, I_F = 12mA$                                                                   |                           | 6N139                |       |        | 10   |          |
|                    |                                                                     |                                                                                                 | T <sub>A</sub> = 25°C     |                      |       | 1.3    | 7    |          |
|                    |                                                                     | $R_L = 270\Omega, I_F = 12mA, E$                                                                | Each Channel              | HCPL2730             |       |        | 15   |          |
|                    |                                                                     |                                                                                                 | T <sub>A</sub> = 25°C     | HCPL2731             |       | 5      | 10   |          |
|                    |                                                                     | $R_L = 2.2\Omega$ , $I_F = 1.6mA$                                                               |                           | 6N138                |       |        | 50   |          |
|                    |                                                                     |                                                                                                 | Each Channel              | HCPL2730/1           |       |        |      |          |
|                    |                                                                     | $R_L = 2.2\Omega, I_F = 1.6 \text{mA}, T$                                                       | Γ <sub>A</sub> = 25°C     | 6N138                |       | 7      | 35   |          |
|                    |                                                                     |                                                                                                 | Each Channel              | HCPL2730/1           |       | 16     |      |          |
| ICM <sub>H</sub> I | Common Mode<br>Transient                                            | $I_F = 0$ mA, $ V_{CM}  = 10V_{P-1}$<br>$R_L = 2.2\Omega$                                       | P, T <sub>A</sub> = 25°C, | 6N138<br>6N139       | 1,000 | 10,000 |      | V/µs     |
|                    | Immunity at Logic HIGH <sup>(3)</sup> (Fig. 25)                     |                                                                                                 | Each Channel              | HCPL2730<br>HCPL2731 |       |        |      |          |
| ICM <sub>L</sub> I | Common Mode<br>Transient                                            | $(I_F = 1.6 \text{mA},  V_{CM}  = 10 V_{P-P}, R_L = 2.2 \Omega)$<br>$T_A = 25 ^{\circ}\text{C}$ |                           | 6N138<br>6N139       | 1,000 | 10,000 |      | V/µs     |
|                    | Immunity at Logic LOW <sup>(3)</sup> (Fig. 25)                      |                                                                                                 | Each Channel              | HCPL2730<br>HCPL2731 |       |        |      |          |

<sup>\*\*</sup> All Typicals at T<sub>A</sub> = 25°C

### **Electrical Characteristics** (Continued) (T<sub>A</sub> = 0 to 70°C unless otherwise specified)

#### **Isolation Characteristics**

| Symbol           | Characteristics                                           | Test Conditions                                                                        | Min. | Тур.*            | Max. | Unit             |
|------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|------|------------------|------|------------------|
| I <sub>I-O</sub> | Input-Output Insulation Leakage<br>Current <sup>(4)</sup> | Relative humidity = $45\%$ , $T_A = 25$ °C, $t = 5$ s, $V_{I-O} = 3000$ VDC            |      |                  | 1.0  | μΑ               |
| V <sub>ISO</sub> | Withstand Insulation Test<br>Voltage <sup>(4)</sup>       | $RH \leq 50\%,  T_A = 25^{\circ}C,  I_{I\text{-}O} \leq 2\mu A, \\ t = 1 \text{ min.}$ | 2500 |                  |      | V <sub>RMS</sub> |
| R <sub>I-O</sub> | Resistance (Input to Output) <sup>(4)</sup>               | V <sub>I-O</sub> = 500VDC                                                              |      | 10 <sup>12</sup> |      | Ω                |
| C <sub>I-O</sub> | Capacitance (Input to Output) <sup>(4)(5)</sup>           | f = 1MHz                                                                               |      | 0.6              | C    | pF               |
| I <sub>I-I</sub> | Input-Input Insulation Leakage<br>Current <sup>(6)</sup>  | $RH \le 45\%$ , $V_{I-I} = 500VDC$ , $t = 5s$ , $HCPL2730/2731$ only                   |      | 0.005            | 43   | μА               |
| R <sub>I-I</sub> | Input-Input Resistance <sup>(6)</sup>                     | V <sub>I-I</sub> = 500VDC, HCPL2730/2731 only                                          |      | 10 <sup>11</sup> |      | Ω                |
| C <sub>I-I</sub> | Input-Input Capacitance <sup>(6)</sup>                    | f = 1MHz, HCPL2730/2731 only                                                           |      | 0.03             |      | pF               |

<sup>\*</sup>All Typicals at  $T_A = 25$ °C

#### Notes:

- 1. Current Transfer Ratio is defined as a ratio of output collector current, I<sub>O</sub>, to the forward LED input current, I<sub>E</sub>, times 100%.
- 2. Pin 7 open. (6N138 and 6N139 only)
- 3. Common mode transient immunity in logic HIGH level is the maximum tolerable (positive)  $dV_{cm}/dt$  on the leading edge of the common mode pulse signal  $V_{CM}$ , to assure that the output will remain in a logic HIGH state (i.e.,  $V_O > 2.0V$ ). Common mode transient immunity in logic LOW level is the maximum tolerable (negative)  $dV_{cm}/dt$  on the trailing edge of the common mode pulse signal,  $V_{CM}$ , to assure that the output will remain in a logic LOW state (i.e.,  $V_O < 0.8V$ ).
- 4. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
- 5. For dual channel devices, C<sub>I-O</sub> is measured by shorting pins 1 and 2 or pins 3 and 4 together and pins 5 through 8 shorted together.
- 6. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

## **Electrical Characteristics** (Continued) $T_A = 25$ °C unless otherwise specified)

**Current Limiting Resistor Calculations** 

$$R_1 \text{ (Non-Invert)} = \underbrace{V_{DD1} - V_{DF} - V_{OL1}}_{I_F}$$

$$R_1 \text{ (Invert)} = V_{\underline{DD1}} - V_{OH1} - V_{\underline{D}F}$$

$$I_F$$

$$\mathsf{R}_2 = \underbrace{\mathsf{V}_{\mathsf{DD2}} = \mathsf{V}_{\mathsf{OLX}} \left( @ \ \mathsf{I}_{\mathsf{L}} - \mathsf{I}_{\mathsf{2}} \right)}_{\mathsf{I}_{\mathsf{L}}}$$

#### Where:

 $V_{DD1}$  = Input Supply Voltage

V<sub>DD2</sub> = Output Supply Voltage

V<sub>DF</sub> = Diode Forward Voltage

V<sub>OL1</sub> = Logic "0" Voltage of Driver

V<sub>OH1</sub> = Logic "1" Voltage of Driver

I<sub>F</sub> = Diode Forward Current

V<sub>OLX</sub> = Saturation Voltage of Output Transistor

I<sub>L</sub> = Load Current Through Resistor R2

I<sub>2</sub> = Input Current of Output Gate

|        |          |      |              | OUTPUT        |        |        |        |        |        |  |  |
|--------|----------|------|--------------|---------------|--------|--------|--------|--------|--------|--|--|
| IN     | INPUT    |      | CMOS<br>@ 5V | CMOS<br>@ 10V | 74XX   | 74LXX  | 74SXX  | 74LSXX | 74HXX  |  |  |
|        |          |      | R2 (V)       | R2 (V)        | R2 (V) | R2 (V) | R2 (V) | R2 (V) | R2 (V) |  |  |
| CMOS   | NON-INV. | 2000 | 1000         | 2200          | 750    | 1000   | 1000   | 1000   | 560    |  |  |
| @ 5V   | INV.     | 510  |              |               |        |        |        |        |        |  |  |
| CMOS   | NON-INV. | 5100 |              |               |        |        |        |        |        |  |  |
| @ 10V  | INV.     | 4700 |              |               |        |        |        |        |        |  |  |
| 74XX   | NON-INV. | 2200 |              |               |        |        |        |        |        |  |  |
|        | INV.     | 180  |              |               |        |        |        |        |        |  |  |
| 74LXX  | NON-INV. | 1800 |              |               |        |        |        |        |        |  |  |
|        | INV.     | 100  |              |               |        |        |        |        |        |  |  |
| 74SXX  | NON-INV. | 2000 |              |               |        |        |        |        |        |  |  |
|        | INV.     | 360  |              |               |        |        |        |        |        |  |  |
| 74LSXX | NON-INV. | 2000 |              |               |        |        |        |        |        |  |  |
|        | INV.     | 180  |              | <b>V</b>      |        |        |        |        |        |  |  |
| 74HXX  | NON-INV. | 2000 |              |               |        |        |        |        |        |  |  |
|        | INV.     | 180  |              |               |        |        |        |        |        |  |  |

Fig. 1 Resistor Values for Logic Interface

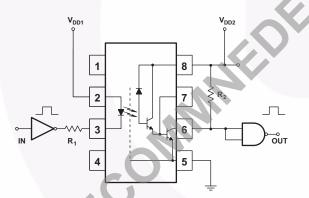



Fig. 2 Non-Inverting Logic Interface

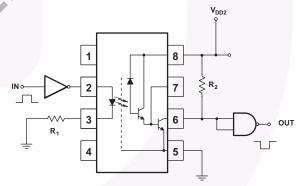



Fig. 3 Inverting Logic Interface

### **Typical Performance Curves**

Fig. 4 LED Forward Current vs. Forward Voltage

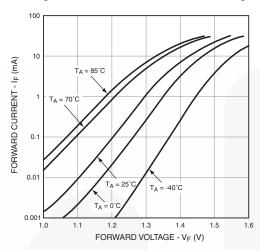
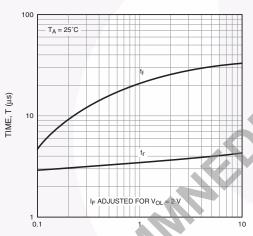




Fig. 6 Non-saturated Rise and Fall Times vs. Load Resistance (6N138 / 6N139 Only)



 $R_L$  - LOAD RESISTANCE ( $k\Omega$ )

Fig. 8 Propagation Delay To Logic Low vs. Base-Emitter Resistance (HCPL2730 / HCPL2731 Only)

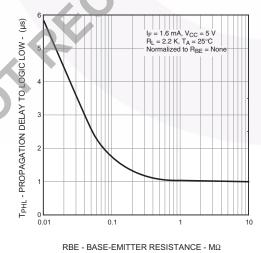



Fig. 5 LED Forward Voltage vs. Temperature

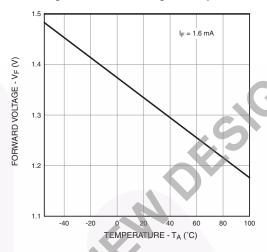
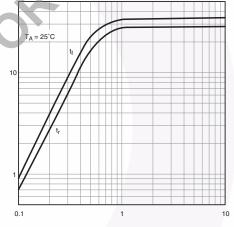
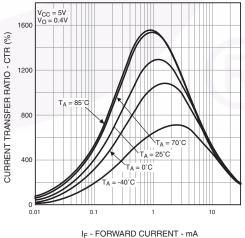





Fig. 7 Non-saturated Rise and Fall Times vs. Load Resistance (HCPL2730 / HCPL2731 Only)



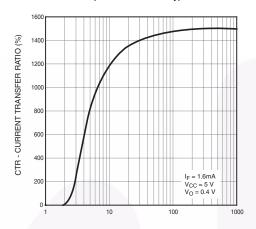

 $R_L$  - LOAD RESISTANCE (k $\Omega$ )

Fig. 9 Current Transfer Ratio vs. Forward Current (6N138 / 6N139 Only)



### Typical Performance Curves (Continued)

Fig. 10 Current Transfer Ratio vs. Base-Emitter Resistance (6N138 / 6N139 Only)



 $\mathsf{R}_\mathsf{BE}$  - BASE RESISTANCE ( $\mathsf{k}\Omega$ )

Fig. 12 Output Current vs Output Voltage (6N138 / 6N139 Only)

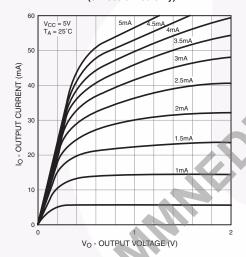



Fig. 14 Output Current vs. Input Diode Forward Current (6N138 / 6N139 Only)

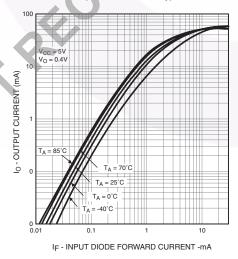



Fig. 11 Current Transfer Ratio vs. Forward Current (HCPL2730 / HCPL2731 Only)

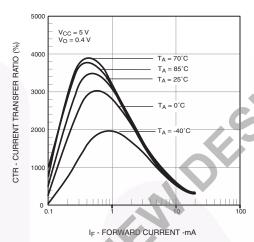



Fig. 13 Output Current vs Output Voltage (HCPL2730 / HCPL2731 Only)

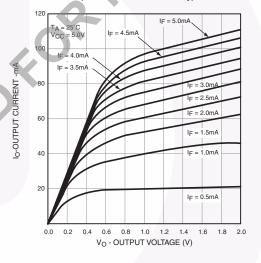
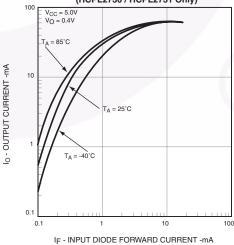




Fig. 15 Output Current vs Input Diode Forward Current (HCPL2730 / HCPL2731 Only)



### **Typical Performance Curves** (Continued)

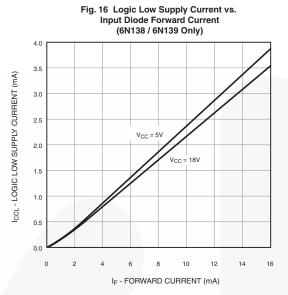



Fig. 17 Logic Low Supply Current vs. Input Diode Forward Current (HCPL2730 / HCPL2731 Only)

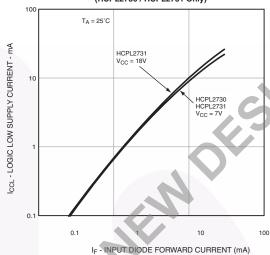



Fig. 18 Propagation Delay vs. Input Diode Forward Current (6N138 / 6N139 Only)

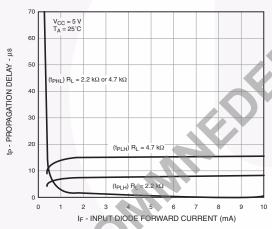



Fig. 19 Propagation Delay vs. Input Diode Forward Current (HCPL2730 / HCPL2731 Only)

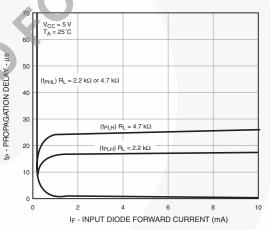



Fig. 20 Propagation Delay to Logic Low vs. Pulse Period (6N138 / 6N139 Only)

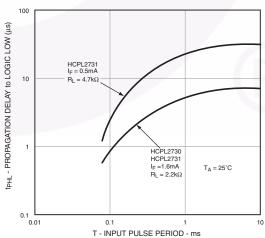




Fig. 21 Propagation Delay to Logic Low vs. Pulse Period (HCPL2730 / HCPL2731 Only)



### Typical Performance Curves (Continued)

Fig. 22 Propagation Delay vs. Temperature (6N138 / 6N139 Only)

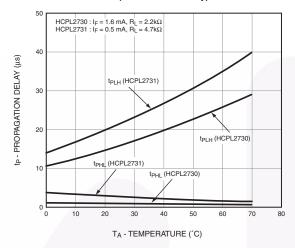
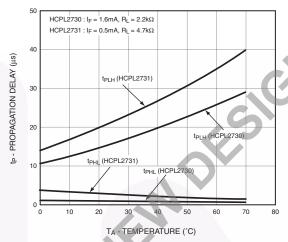
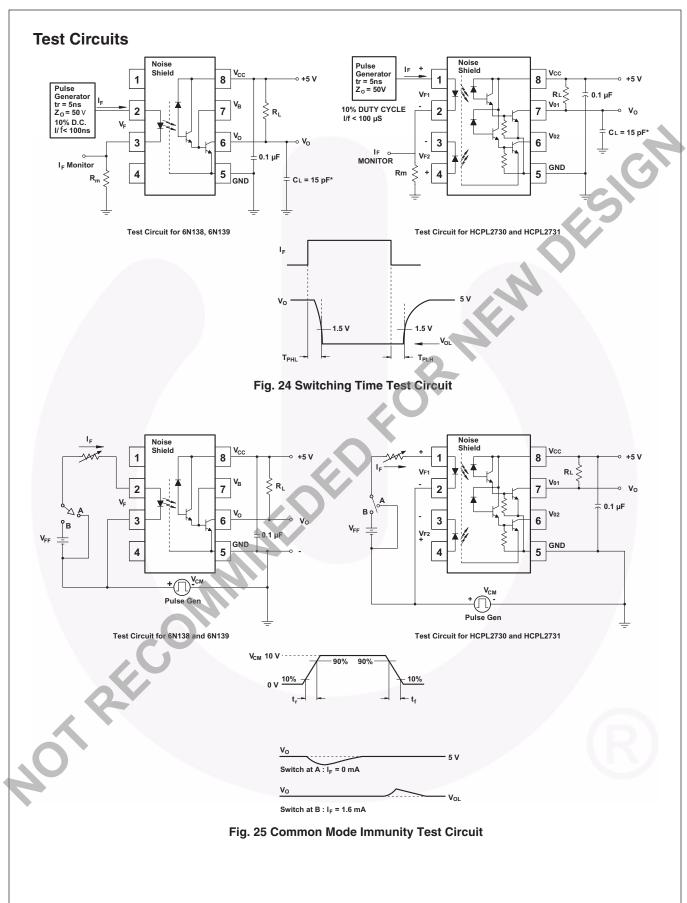
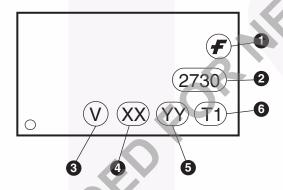
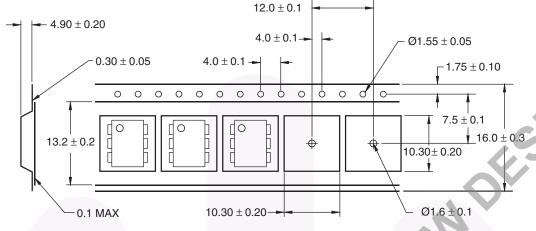





Fig. 23 Propagation Delay vs. Temperature (HCPL2730 / HCPL2731 Only)



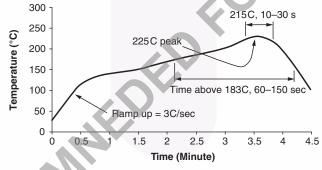



### **Ordering Information**

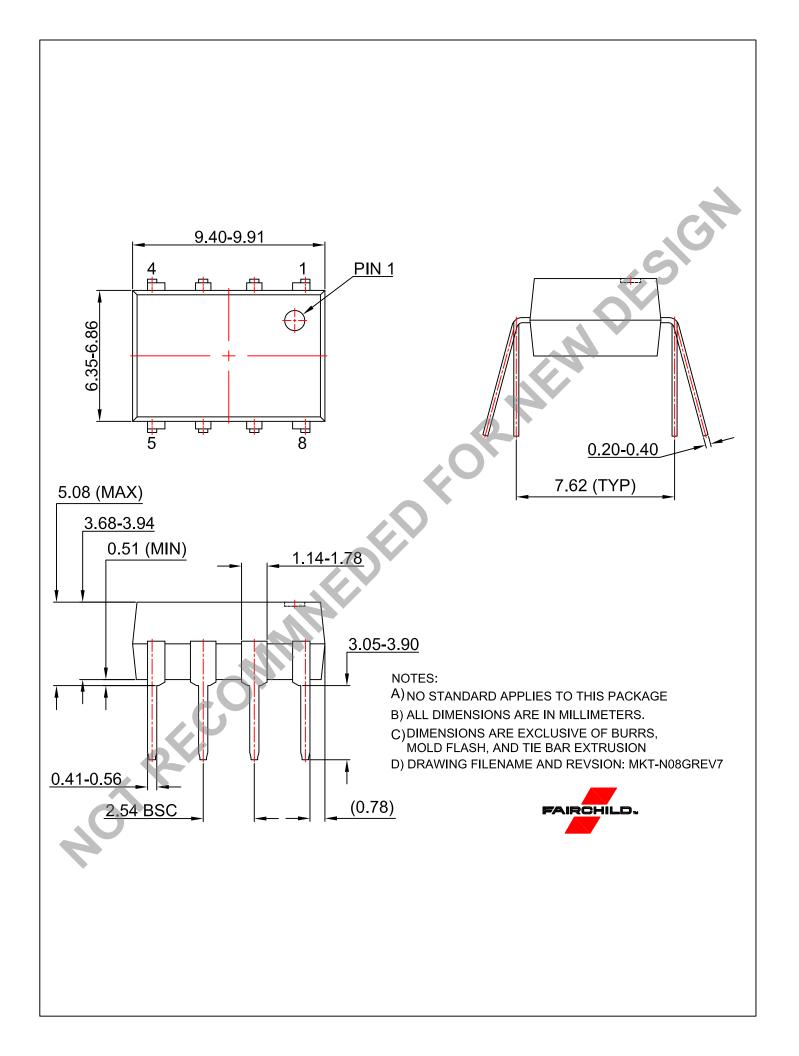

| Option    | Example Part Number | Description                                   |
|-----------|---------------------|-----------------------------------------------|
| No Suffix | 6N138               | Standard Through Hole Device, 50 pcs per tube |
| S         | 6N138S              | Surface Mount Lead Bend                       |
| SD        | 6N138SD             | Surface Mount; Tape and reel                  |
| W         | 6N138W              | 0.4" Lead Spacing                             |
| V         | 6N138V              | VDE0884                                       |
| WV        | 6N138WV             | VDE0884; 0.4" lead spacing                    |
| SV        | 6N138SV             | VDE0884; surface mount                        |
| SDV       | 6N138SDV            | VDE0884; surface mount; tape and reel         |

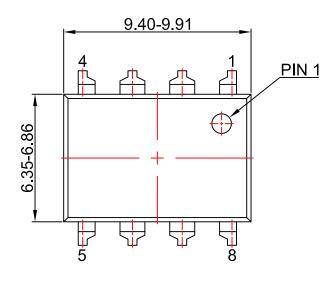
## **Marking Information**

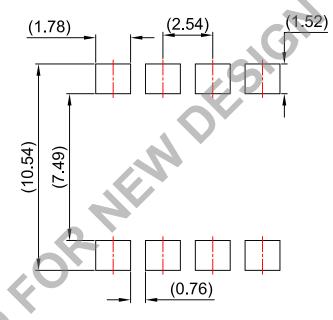


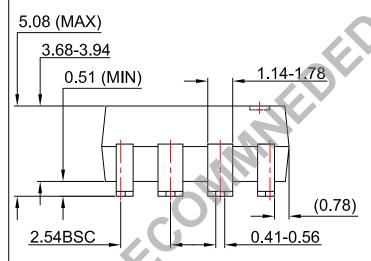

| Definitions |                                                                                        |  |  |  |  |
|-------------|----------------------------------------------------------------------------------------|--|--|--|--|
| 1           | Fairchild logo                                                                         |  |  |  |  |
| 2           | Device number                                                                          |  |  |  |  |
| 3           | VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table) |  |  |  |  |
| 4           | Two digit year code, e.g., '07'                                                        |  |  |  |  |
| 5           | Two digit work week ranging from '01' to '53'                                          |  |  |  |  |
| 6           | Assembly package code                                                                  |  |  |  |  |

### **Tape Specifications**

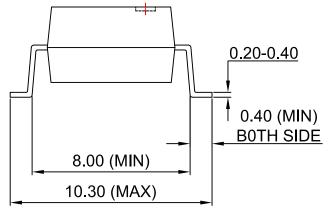




User Direction of Feed


### **Reflow Profile**




- Peak reflow temperature: 225C (package surface temperature) Time of temperature higher than 183C for 60–150 seconds One time soldering reflow is recommended














#### NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N08Hrev7.



We -ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not

designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

N. American Technical Support: 800-282-9855 Toll Free

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for High Speed Optocouplers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

HCPL-2201-300 TLP558(F) JAN4N24 610737H HCPL2630M HCPL2731SM HCPL2630SM PS9817A-1-F3-AX TLP2766A(E EL816S2(C)(TU)-F TLP281-4 PS9121-F3-AX PS9123-F3-AX HCPL2531S HCPL2631SD HCPL-4661-500E TLP118(TPL,E) TLP521-2XGB TLP621-2XGB 4N46-300E JANTXV4N24U SFH6318T 6N135-300E TIL198 TLP2309(TPL,E) TLP2355(TPL,E TLP521-4GR TLP521-4XGB TLP621-4X TLP621XSM IS281-4GB IS181GR ICPL2631 ICPL2630 ICPL2601 TLP714(F) TLP754(F) FOD260LSDV ACPL-M21L-500E ACPL-064L-500E PS2501-1XSM PS2505-1 PS2561L2-1-F3-A PS2913-1-F3-AX PS9821-2-F3-AX FOD0721R2 FODM8061R2V 6N135SDM 6N137SDM 6N138-000E