

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
5．3A，1200V，NPT Series N－Channel IGBT

The HGTD1N120BNS and HGTP1N120BN are Non－Punch Through（NPT）IGBT designs．They are new members of the MOS gated high voltage switching IGBT family．IGBTs combine the best features of MOSFETs and bipolar transistors．This device has the high input impedance of a MOSFET and the low on－state conduction loss of a bipolar transistor．

The IGBT is ideal for many high voltage switching applications operating at moderate frequencies where low conduction losses are essential，such as：AC and DC motor controls，power supplies and drivers for solenoids，relays and contactors．

Formerly Developmental Type TA49316．

Ordering Information

PART NUMBER	PACKAGE	BRAND
HGTD1N120BNS	TO－252AA	1N120B
HGTP1N120BN	TO－220AB	1N120BN

NOTE：When ordering，use the entire part number．Add the suffix 9A to obtain the TO－252AA in tape and reel，i．e．HGTD1N120BNS9A

Symbol

Features

－ $5.3 \mathrm{~A}, 1200 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$
－ 1200 V Switching SOA Capability
－Typical EOFF ．．．．．．．．．．．．．．．．． $120 \mu \mathrm{~J}$ at $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$
－Short Circuit Rating
－Low Conduction Loss
－Avalanche Rated
－Temperature Compensating SABER ${ }^{\text {TM }}$ Model Thermal Impedance SPICE Model www．fairchildsemi．com
－Related Literature
－TB334，＂Guidelines for Soldering Surface Mount Components to PC Boards＂

Packaging

JEDEC TO－220AB

JEDEC TO－252AA

FAIRCHILD SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U．S．PATENTS

$4,364,073$	$4,417,385$	$4,430,792$	$4,443,931$	$4,466,176$	$4,516,143$	$4,532,534$	$4,587,713$
$4,598,461$	$4,605,948$	$4,620,211$	$4,631,564$	$4,639,754$	$4,639,762$	$4,641,162$	$4,644,637$
$4,682,195$	$4,684,413$	$4,694,313$	$4,717,679$	$4,743,952$	$4,783,690$	$4,794,432$	$4,801,986$
$4,803,533$	$4,809,045$	$4,809,047$	$4,810,665$	$4,823,176$	$4,837,606$	$4,860,080$	$4,883,767$
$4,888,627$	$4,890,143$	$4,901,127$	$4,904,609$	$4,933,740$	$4,963,951$	$4,969,027$	

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

		ALL TYPES	UNITS
Collector to Emitter Voltage	$\mathrm{BV}_{\text {CES }}$	1200	V
Collector Current Continuous			
At $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$. $\mathrm{l}_{\mathrm{C} 25}$	5.3	A
At $\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}$. $\mathrm{I}_{\text {C110 }}$	2.7	A
Collector Current Pulsed (Note 1)	. ${ }_{\text {CM }}$	6	A
Gate to Emitter Voltage Continuous.	. $\mathrm{V}_{\mathrm{GES}}$	± 20	V
Gate to Emitter Voltage Pulsed	. $\mathrm{V}_{\mathrm{GEM}}$	± 30	V
Switching Safe Operating Area at $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$ (Figure 2)	SSOA	6 A at 1200 V	
Power Dissipation Total at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\ldots P_{D}$	60	W
Power Dissipation Derating $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$		0.476	W/ ${ }^{\circ} \mathrm{C}$
Forward Voltage Avalanche Energy (Note 2)	$\mathrm{E}_{\text {AV }}$	10	mJ
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Maximum Lead Temperature for Soldering			
Leads at 0.063in (1.6mm) from Case for 10s.	. T_{L}	300	${ }^{\circ} \mathrm{C}$
Package Body for 10s, see Techbrief 334	. . Tpkg	260	${ }^{\circ} \mathrm{C}$
Short Circuit Withstand Time (Note 3) at $\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$.tsc	8	$\mu \mathrm{s}$
Short Circuit Withstand Time (Note 3) at $\mathrm{V}_{\mathrm{GE}}=13 \mathrm{~V} .$.tsC	13	$\mu \mathrm{s}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Single Pulse; VGE $=15 \mathrm{~V}$; Pulse width limited by maximum junction temperature.
2. $\mathrm{I}_{\mathrm{CE}}=7 \mathrm{~A}, \mathrm{~L}=400 \mu \mathrm{H}, \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$.
3. $\mathrm{V}_{\mathrm{CE}(\mathrm{PK})}=840 \mathrm{~V}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=82 \Omega$.

Electrical Specifications $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Collector to Emitter Breakdown Voltage	$\mathrm{BV}_{\text {CES }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$		1200	-	-	V
Emitter to Collector Breakdown Voltage	$\mathrm{BV}_{\text {ECS }}$	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$		15	-	-	V
Collector to Emitter Leakage Current	ICES	$\mathrm{V}_{C E}=1200 \mathrm{~V}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	-	250	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	-	20	-	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	-	-	1.0	mA
Collector to Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	2.5	2.9	V
			$\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	-	3.8	4.3	V
Gate to Emitter Threshold Voltage	$\mathrm{V}_{\mathrm{GE} \text { (TH) }}$	$\mathrm{I}_{\mathrm{C}}=50 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$		6.0	7.1	-	V
Gate to Emitter Leakage Current	$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$		-	-	± 250	nA
Switching SOA	SSOA	$\begin{aligned} & \mathrm{T}_{J}=150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=82 \Omega, \mathrm{~V}_{G E}=15 \mathrm{~V}, \\ & \mathrm{~L}=2 \mathrm{mH}, \mathrm{~V}_{\mathrm{CE}(\mathrm{PK})}=1200 \mathrm{~V} \end{aligned}$		6	-	-	A
Gate to Emitter Plateau Voltage	$\mathrm{V}_{\mathrm{GEP}}$	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=600 \mathrm{~V}$		-	9.2	-	V
On-State Gate Charge	$\mathrm{Q}_{\mathrm{G}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=600 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$	-	14	20	nC
			$\mathrm{V}_{\mathrm{GE}}=20 \mathrm{~V}$	-	15	21	nC

Electrical Specifications $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Current Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \mathrm{l}}$	$\begin{aligned} & \text { IGBT and Diode at } \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{CE}}=1.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=960 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=82 \Omega \\ & \mathrm{~L}=4 \mathrm{mH} \\ & \text { Test Circuit (Figure 18) } \end{aligned}$	-	15	20	ns
Current Rise Time	$t_{r l}$		-	11	14	ns
Current Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		-	67	76	ns
Current Fall Time	t_{fl}		-	226	300	ns
Turn-On Energy (Note 5)	EON1		-	70	-	$\mu \mathrm{J}$
Turn-On Energy (Note 5)	EON2		-	172	187	$\mu \mathrm{J}$
Turn-Off Energy (Note 4)	E		-	90	123	$\mu \mathrm{J}$
Current Turn-On Delay Time	$\mathrm{t}_{\text {d(ON) }}$	$\begin{aligned} & \text { IGBT and Diode at } \mathrm{T}_{J}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{CE}}=1.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=960 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=82 \Omega \\ & \mathrm{~L}=4 \mathrm{mH} \end{aligned}$ Test Circuit (Figure 18)	-	13	17	ns
Current Rise Time	t_{rl}		-	11	15	ns
Current Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		-	75	88	ns
Current Fall Time	t_{fl}		-	258	370	ns
Turn-On Energy (Note 5)	EON1		-	145	-	$\mu \mathrm{J}$
Turn-On Energy (Note 5)	EON2		-	385	440	$\mu \mathrm{J}$
Turn-Off Energy (Note 4)	E OFF		-	120	175	$\mu \mathrm{J}$
Thermal Resistance Junction To Case	$\mathrm{R}_{\text {өJC }}$		-		2.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:
4. Turn-Off Energy Loss (EOFF) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (ICE = OA). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.
5. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E EN1 is the turn-on loss of the IGBT only. EON2 is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T_{j} as the IGBT. The diode type is specified in Figure 18.

Typical Performance Curves (Unless Otherwise Specified)

FIGURE 1. DC COLLECTOR CURRENT vs CASE TEMPERATURE

FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA

Typical Performance Curves (Unless Otherwise Specified) (Continued)

FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO EMITTER CURRENT

FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE

FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO EMITTER CURRENT

V_{GE}, GATE TO EMITTER VOLTAGE (V)

FIGURE 4. SHORT CIRCUIT WITHSTAND TIME

FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE

FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO EMITTER CURRENT

Typical Performance Curves (Unless Otherwise Specified) (Continued)

FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO EMITTER CURRENT

$I_{\text {CE }}$, COLLECTOR TO EMITTER CURRENT (A)

FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO EMITTER CURRENT

FIGURE 13. TRANSFER CHARACTERISTIC

FIGURE 10. TURN-ON RISE TIME vs COLLECTORTO EMITTER CURRENT

FIGURE 12. TURN-OFF FALL TIME vs COLLECTOR TO EMITTER CURRENT

FIGURE 14. GATE CHARGE WAVEFORMS

Typical Performance Curves (Unless Otherwise Specified) (Continued)

FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER voltage

FIGURE 16. COLLECTOR TO EMITTER ON-STATE VOLTAGE

FIGURE 17. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE

Test Circuit and Waveforms

FIGURE 18. INDUCTIVE SWITCHING TEST CIRCUIT

FIGURE 19. SWITCHING TEST WAVEFORMS

Handling Precautions for IGBTs

Insulated Gate Bipolar Transistors are susceptible to gate-insulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler's body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBTs are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBTs can be handled safely if the following basic precautions are taken:

1. Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as "ECCOSORBDTM LD26" or equivalent.
2. When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means - for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from circuits with power on.
5. Gate Voltage Rating - Never exceed the gate-voltage rating of $\mathrm{V}_{\mathrm{GEM}}$. Exceeding the rated V_{GE} can result in permanent damage to the oxide layer in the gate region.
6. Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup.
7. Gate Protection - These devices do not have an internal monolithic Zener diode from gate to emitter. If gate protection is required an external Zener is recommended.

Operating Frequency Information

Operating frequency information for a typical device (Figure 3) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (lCE) plots are possible using the information shown for a typical unit in Figures 6, 7, 8, 9 and 11. The operating frequency plot (Figure 3) of a typical device shows $f_{M A X 1}$ or $f_{\text {MAX2 }}$; whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.
$f_{M A X 1}$ is defined by $f_{M A X 1}=0.05 /\left(\mathrm{t}_{\mathrm{d}(\mathrm{OFF}) \mathrm{I}^{+}} \mathrm{t}_{\mathrm{d}(\mathrm{ON}) \mathrm{I}}\right)$. Deadtime (the denominator) has been arbitrarily held to 10\% of the on-state time for a 50% duty factor. Other definitions are possible. $\mathrm{t}_{\mathrm{d}(\mathrm{OFF}) \mid}$ and $\mathrm{t}_{\mathrm{d}(\mathrm{ON})!}$ are defined in Figure 19. Device turn-off delay can establish an additional frequency limiting condition for an application other than $\mathrm{T}_{\mathrm{JM}} \cdot \mathrm{t}_{\mathrm{d}(\mathrm{OFF})} \mathrm{I}$ is important when controlling output ripple under a lightly loaded condition.
$f_{\text {MAX2 }}$ is defined by $f_{\text {MAX2 }}=\left(P_{D}-P_{C}\right) /\left(E_{\text {OFF }}+E_{O N 2}\right)$. The allowable dissipation $\left(P_{D}\right)$ is defined by $P_{D}=\left(T_{J M}-T_{C}\right) / R_{\theta J C}$. The sum of device switching and conduction losses must not exceed P_{D}. A 50\% duty factor was used (Figure 3) and the conduction losses (P_{C}) are approximated by $\mathrm{P}_{\mathrm{C}}=\left(\mathrm{V}_{\mathrm{CE}} \times \mathrm{I}_{\mathrm{CE}}\right) / 2$.
$\mathrm{E}_{\mathrm{ON} 2}$ and $\mathrm{E}_{\text {OFF }}$ are defined in the switching waveforms shown in Figure 19. EON2 is the integral of the instantaneous power loss ($\mathrm{I}_{\mathrm{CE}} \times \mathrm{V}_{\mathrm{CE}}$) during turn-on and $\mathrm{E}_{\text {OFF }}$ is the integral of the instantaneous power loss ($\mathrm{I}_{\mathrm{CE}} \times \mathrm{V}_{\mathrm{CE}}$) during turn-off. All tail losses are included in the calculation for $E_{O F F}$; i.e., the collector current equals zero ($\mathrm{I}_{\mathrm{CE}}=0$).

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {™ }}$	FAST ©	OPTOLOGICTM	SMART START ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$
Bottomless ${ }^{\text {TM }}$	FASTr ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\text {TM }}$	STAR*POWER ${ }^{\text {TM }}$	
CoolFET ${ }^{\text {TM }}$	FRFET ${ }^{\text {TM }}$	PACMAN ${ }^{\text {TM }}$	Stealth ${ }^{\text {TM }}$	
CROSSVOLT ${ }^{\text {TM }}$	GlobalOptoisolator ${ }^{\text {TM }}$	POP ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$-3	
DenseTrench ${ }^{\text {TM }}$	GTOTM	Power247 ${ }^{\text {TM }}$	SuperSOTTM-6	
DOME ${ }^{\text {TM }}$	$\mathrm{HiSeC}^{\text {¹ }}$	PowerTrench ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-8	
EcoSPARK ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	QFET ${ }^{\text {TM }}$	SyncFET ${ }^{\text {TM }}$	
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {™ }}$	LittleFET ${ }^{\text {TM }}$	QS ${ }^{\text {™ }}$	TinyLogic ${ }^{\text {™ }}$	
EnSigna ${ }^{\text {TM }}$	MicroFET ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$	
FACTM	MicroPak ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	UHC ${ }^{\text {TM }}$	
FACT Quiet Series ${ }^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	SILENTSWITCHER ${ }^{\circledR}$	UltraFET ${ }^{\text {® }}$	
STAR*POWER is used under license				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Transistors category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0\#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB

IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2
IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 HGTG40N60B3 FGH60N60SMD_F085

FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0\#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1 IDW40E65D2FKSA1

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

