SMPS Series \mathbf{N}-Channel IGBT
 600 V

HGTG40N60A4

The HGTG40N60A4 is a MOS gated high voltage switching device combining the best features of a MOSFET and a bipolar transistor. This device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between $25^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$. This IGBT is ideal for many high voltage switching applications operating at high frequencies where low conduction losses are essential. This device has been optimized for high frequency switch mode power supplies

Formerly Developmental Type TA49347.

Features

- 100 kHz Operation at $390 \mathrm{~V}, 40 \mathrm{~A}$
- 200 kHz Operation at $390 \mathrm{~V}, 20 \mathrm{~A}$
- 600 V Switching SOA Capability
- Typical Fall Time 55 ns at $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$
- Low Conduction Loss
- This is a $\mathrm{Pb}-F r e e$ Device

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information on page 7 of this data sheet.

ABSOLUTE MAXIMUM RATINGS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	HGTG40N60A4	Unit
Collector to Emitter Voltage	$\mathrm{BV}_{\mathrm{CES}}$	600	V
Collector Current Continuous At $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ $\mathrm{At} \mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C} 25}$	75	
Collector Current Pulsed (Note 1)	$\mathrm{I}_{\mathrm{C} 110}$	A	
Gate to Emitter Voltage Continuous	I_{CM}	300	A
Gate to Emitter Voltage Pulsed	$\mathrm{V}_{\mathrm{GES}}$	± 20	A
Switching Safe Operating Area at $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$, Figure 2	$\mathrm{V}_{\mathrm{GEM}}$	± 30	V
Power Dissipation Total at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	SSOA	200 A at 600 V	V
Power Dissipation Derating $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$	P_{D}	625	W
Operating and Storage Junction Temperature Range		5	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Maximum Lead Temperature for Soldering	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\mathrm{STG}}$	-55 to 150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Pulse width limited by maximum junction temperature.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{j}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Typ	Max	Unit
Collector to Emitter Breakdown Voltage	$\mathrm{BV}_{\text {CES }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$		600	-	-	V
Emitter to Collector Breakdown Voltage	$\mathrm{BV}_{\mathrm{ECS}}$	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$		20	-	-	V
Collector to Emitter Leakage Current	$I_{\text {ces }}$	$\mathrm{V}_{\text {CE }}=B V_{\text {CES }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	-	-	250	$\mu \mathrm{A}$
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	-	-	3.0	mA
Collector to Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT) }}$	$\mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	-	1.7	2.7	V
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	-	1.5	2.0	V
Gate to Emitter Threshold Voltage	$\mathrm{V}_{\mathrm{GE} \text { (TH) }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\mathrm{GE}}$		4.5	5.6	7	V
Gate to Emitter Leakage Current	$I_{\text {ges }}$	$\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$		-	-	± 250	nA
Switching SOA	SSOA	$\begin{aligned} & \mathrm{T}_{J}=150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=2.2 \Omega, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \mathrm{~L}=100 \mu \mathrm{H}, \mathrm{~V}_{\mathrm{CE}}=600 \mathrm{~V} \end{aligned}$		200	-	-	A
Gate to Emitter Plateau Voltage	$V_{\text {GEP }}$	$\mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=0.5 \mathrm{BV}_{\text {CES }}$		-	8.5	-	V
On-State Gate Charge	$\mathrm{Q}_{\mathrm{g}(\mathrm{ON})}$	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{BV} \text { CES } \end{aligned}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$	-	350	405	nC
			$\mathrm{V}_{\mathrm{GE}}=20 \mathrm{~V}$	-	450	520	nC
Current Turn-On Delay Time	$\mathrm{t}_{\text {d(ON) }}$	$\begin{array}{\|l} \hline \text { IGBT and Diode at } \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ \mathrm{I}_{\mathrm{CE}}=40 \mathrm{~A}, \\ \mathrm{~V}_{\mathrm{CE}}=0.65 \mathrm{BV} \text { CES, } \\ \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{G}}=2.2 \Omega, \\ \mathrm{~L}=200 \mu \mathrm{H}, \\ \text { Test Circuit (Figure 20) } \end{array}$		-	25	-	ns
Current Rise Time	t_{rl}			-	18	-	ns
Current Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{OFF}) \mathrm{l}}$			-	145	-	ns
Current Fall Time	t_{fl}			-	35	-	ns
Turn-On Energy (Note 3)	EON1			-	400	-	$\mu \mathrm{J}$
Turn-On Energy (Note 3)	$\mathrm{E}_{\text {ON2 }}$			-	850	-	$\mu \mathrm{J}$
Turn-Off Energy (Note 2)	E			-	370	-	$\mu \mathrm{J}$

ELECTRICAL CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (continued)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Current Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \text { I }}$	IGBT and Diode at $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$, $\mathrm{I}_{\mathrm{CE}}=40 \mathrm{~A}$, $V_{C E}=0.65 \mathrm{BV}_{\mathrm{CES}},$ $\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$, $\mathrm{R}_{\mathrm{G}}=2.2 \Omega,$ $\mathrm{L}=200 \mu \mathrm{H},$ Test Circuit (Figure 20)	-	27	-	ns
Current Rise Time	$\mathrm{trl}_{\mathrm{rl}}$		-	20	-	ns
Current Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		-	185	225	ns
Current Fall Time	t_{fl}		-	55	95	ns
Turn-On Energy (Note 3)	EON1		-	400	-	$\mu \mathrm{J}$
Turn-On Energy (Note 3)	EON2		-	1220	1400	$\mu \mathrm{J}$
Turn-Off Energy (Note 2)	$\mathrm{E}_{\text {OFF }}$		-	700	800	$\mu \mathrm{J}$
Thermal Resistance Junction To Case	$\mathrm{R}_{\theta \mathrm{JC}}$		-	-	0.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Turn-Off Energy Loss ($E_{\text {OFF }}$) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (ICE = 0 A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.
3. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. EON1 is the turn-on loss of the IGBT only. EON2 is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T_{J} as the IGBT. The diode type is specified in Figure 20.

TYPICAL PERFORMANCE CURVES (unless otherwise specified)

Figure 1. DC COLLECTOR CURRENT vs. CASE TEMPERATURE

Figure 3. OPERATING FREQUENCY vs. COLLECTOR TO EMITTER CURRENT

Figure 2. MINIMUM SWITCHING SAFE OPERATING AREA

Figure 4. SHORT CIRCUIT WITHSTAND TIME

HGTG40N60A4

TYPICAL PERFORMANCE CURVES
(unless otherwise specified) (continued)

Figure 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE

Figure 7. TURN-ON ENERGY LOSS vs. COLLECTOR TO EMITTER CURRENT

Figure 9. TURN-ON DELAY TIME vs. COLLECTOR TO EMITTER CURRENT

Figure 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE

Figure 8. TURN-OFF ENERGY LOSS vs. COLLECTOR TO EMITTER CURRENT

Figure 10. TURN-ON RISE TIME vs. COLLECTOR TO EMITTER CURRENT

TYPICAL PERFORMANCE CURVES (unless otherwise specified) (continued)

Figure 11. TURN-OFF DELAY TIME vs. COLLECTOR TO EMITTER CURRENT

Figure 13. TRANSFER CHARACTERISTIC

Figure 15. TOTAL SWITCHING LOSS vs. CASE TEMPERATURE

Figure 12. FALL TIME vs. COLLECTOR TO EMITTER CURRENT

Figure 14. GATE CHARGE WAVEFORMS

Figure 16. TOTAL SWITCHING LOSS vs. GATE RESISTANCE

TYPICAL PERFORMANCE CURVES (unless otherwise specified) (continued)

Figure 17. CAPACITANCE vs. COLLECTOR TO EMITTER VOLTAGE

Figure 18. COLLECTOR TO EMITTER ON-STATE VOLTAGE vs. GATE TO EMITTER VOLTAGE

Figure 19. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE

TEST CIRCUIT AND WAVEFORMS

Figure 20. INDUCTIVE SWITCHING TEST CIRCUIT

Figure 21. SWITCHING TEST WAVEFORMS

HANDLING PRECAUTIONS FOR IGBTs

Insulated Gate Bipolar Transistors are susceptible to gateinsulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler's body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBTs are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBTs can be handled safely if the following basic precautions are taken:

1. Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as "ECCOSORBD ${ }^{\text {TM }}$ LD26" or equivalent.
2. When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means - for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from circuits with power on.
5. Gate Voltage Rating - Never exceed the gate-voltage rating of $\mathrm{V}_{\mathrm{GEM}}$. Exceeding the rated V_{GE} can result in permanent damage to the oxide layer in the gate region.
6. Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open- circuited or floating should be avoided. These conditions can result in turn-on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup.
7. Gate Protection - These devices do not have an internal monolithic Zener diode from gate to emitter. If gate protection is required an external Zener is recommended.

OPERATING FREQUENCY INFORMATION

Operating frequency information for a typical device (Figure 3) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 6, 7, 8, 9 and 11. The operating frequency plot (Figure 3) of a typical device shows $f_{\text {MAX1 }}$ or $f_{\text {MAX } 2}$; whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.
$\mathrm{f}_{\text {MAX1 }}$ is defined by $\mathrm{f}_{\text {MAX1 }}=0.05 /\left(\mathrm{t}_{\mathrm{d}(\mathrm{OFF}) \mathrm{I}}+\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \mathrm{I}}\right)$. Deadtime (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible. $\mathrm{t}_{\mathrm{d}(\mathrm{OFF}) \mathrm{I}}$ and $\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \mathrm{I}}$ are defined in Figure 21. Device turn-off delay can establish an additional frequency limiting condition for an application other than $\mathrm{T}_{\mathrm{JM}} \cdot \mathrm{t}_{\mathrm{d}(\mathrm{OFF}) \mathrm{I}}$ is important when controlling output ripple under a lightly loaded condition.
$f_{\text {MAX2 }}$ is defined by $f_{\text {MAX2 }}=\left(P_{D}-P_{C}\right) /\left(E_{\text {OFF }}+E_{O N 2}\right)$. The allowable dissipation $\left(\mathrm{P}_{\mathrm{D}}\right)$ is defined by $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{\mathrm{JM}}-\mathrm{T}_{\mathrm{C}}\right)$ / $\mathrm{R}_{\theta \mathrm{JC}}$. The sum of device switching and conduction losses must not exceed P_{D}. A 50% duty factor was used (Figure 21) and the conduction losses $\left(\mathrm{P}_{\mathrm{C}}\right)$ are approximated by $\mathrm{P}_{\mathrm{C}}=\left(\mathrm{V}_{\mathrm{CE}} \times \mathrm{I}_{\mathrm{CE}}\right) / 2$.
$\mathrm{E}_{\mathrm{ON} 2}$ and $\mathrm{E}_{\mathrm{OFF}}$ are defined in the switching waveforms shown in Figure 25. $\mathrm{E}_{\mathrm{ON} 2}$ is the integral of the instantaneous power loss ($\mathrm{I}_{\mathrm{CE}} \times \mathrm{V}_{\mathrm{CE}}$) during turn-on and $\mathrm{E}_{\mathrm{OFF}}$ is the integral of the instantaneous power loss ($\mathrm{I}_{\mathrm{CE}} \times \mathrm{V}_{\mathrm{CE}}$) during turn-off. All tail losses are included in the calculation for $\mathrm{E}_{\mathrm{OFF}}$; i.e., the collector current equals zero $\left(\mathrm{I}_{\mathrm{CE}}=0\right)$.

ORDERING INFORMATION

Part Number	Package	Brand	Shipping
HGTG40N60A4	TO-247	40N60A4	450 Units / Tube

NOTE: When ordering, use the entire part number.

TO-247-3LD SHORT LEAD CASE 340CK ISSUE A

DATE 31 JAN 2019

NOTES: UNLESS OTHERWISE SPECIFIED.
A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
B. ALL DIMENSIONS ARE IN MILLIMETERS.
C. DRAWING CONFORMS TO ASME Y14.5-2009.
D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

	AYWWZZ XXXXXXX XXXXXXX -
XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
ZZ	$=$ Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13851G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versins are

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Transistors category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0\#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB

IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2
IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 HGTG40N60B3 FGH60N60SMD_F085

FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0\#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1 IDW40E65D2FKSA1

