

ON Semiconductor®

### HUF76629D3ST-F085

# N-Channel Logic Level UltraFET® Power MOSFET **100V**, **20A**, **52m** $\Omega$

#### **Features**

- Typ  $r_{DS(on)}$  = 41m $\Omega$  at  $V_{GS}$  = 10V,  $I_D$  = 20A
- Typ  $Q_{g(tot)}$  = 39nC at  $V_{GS}$  = 10V,  $I_D$  = 20A
- UIS Capability
- RoHS Compliant
- Qualified to AEC Q101

### **Applications**

- Automotive Engine Control
- Powertrain Management
- Solenoid and Motor Drivers
- Distributed Power Architectures and VRM
- Primary Switch for 12V Systems



(TO-252)

### MOSFET Maximum Ratings T<sub>.1</sub> = 25°C unless otherwise noted

| Symbol                            | Parameter                                                                       | Ratings               | Units        |      |
|-----------------------------------|---------------------------------------------------------------------------------|-----------------------|--------------|------|
| $V_{DSS}$                         | Drain to Source Voltage                                                         |                       | 100          | V    |
| $V_{GS}$                          | Gate to Source Voltage                                                          |                       | ±16          | V    |
|                                   | Drain Current - Continuous (V <sub>GS</sub> =10) (Note 1) T <sub>C</sub> = 25°C |                       | 20           | ^    |
| ID                                | Pulsed Drain Current                                                            | T <sub>C</sub> = 25°C | See Figure4  | Α    |
| E <sub>AS</sub>                   | Single Pulse Avalanche Energy                                                   | (Note 2)              | 231          | mJ   |
| D                                 | Power Dissipation                                                               |                       | 150          | W    |
| $P_D$                             | Derate above 25°C                                                               |                       | 1            | W/°C |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature                                               |                       | -55 to + 175 | °C   |
| $R_{\theta JC}$                   | Thermal Resistance Junction to Case                                             |                       | 1            | °C/W |
| $R_{\theta JA}$                   | Maximum Thermal Resistance Junction to Ambient                                  | (Note 3)              | 52           | °C/W |

#### **Package Marking and Ordering Information**

| Device Marking | Device            | Package       | Reel Size | Tape Width | Quantity   |
|----------------|-------------------|---------------|-----------|------------|------------|
| HUF76629D3ST   | HUF76629D3ST-F085 | D-PAK(TO-252) | 13"       | 12mm       | 2500 units |

- 1: Current is limited by bondwire configuration.
- 2: Starting  $T_J = 25^{\circ}C$ , L = 1.8mH,  $I_{AS} = 16A$ ,  $V_{DD} = 100V$  during inductor charging and  $V_{DD} = 0V$  during time in avalanche 3:  $R_{\theta,JA}$  is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder
- mounting surface of the drain pins.  $R_{\theta JC}$  is guaranteed by design while  $R_{\theta JA}$  is determined by the user's board design. The maximum rating presented here is based on mounting on a 1 in<sup>2</sup> pad of 2oz copper.

Units

Max

# **Electrical Characteristics** $T_J = 25^{\circ}C$ unless otherwise noted

**Parameter** 

| Off Characteristics |                                   |                           |                              |     |   |      |    |
|---------------------|-----------------------------------|---------------------------|------------------------------|-----|---|------|----|
| B <sub>VDSS</sub>   | Drain to Source Breakdown Voltage | I <sub>D</sub> = 250μA, \ | V <sub>GS</sub> = 0V         | 100 | - | -    | V  |
| ı                   | Drain to Source Leakage Current   | V <sub>DS</sub> =100V,    | $T_{J} = 25^{\circ}C$        | -   | - | 1    | μА |
| IDSS                |                                   | $V_{GS} = 0V$             | $T_J = 175^{\circ}C(Note 4)$ | -   | - | 1    | mA |
| loco                | Gate to Source Leakage Current    | $V_{cc} = +16V$           |                              | _   | _ | +100 | nΑ |

**Test Conditions** 

Min

Тур

### **On Characteristics**

Symbol

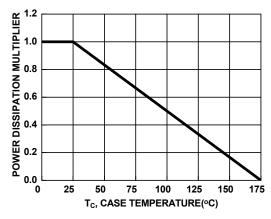
| $V_{GS(th)}$        | Gate to Source Threshold Voltage | $V_{GS} = V_{DS}, I_{D} = 250 \mu A$ |                                 | 1.0 | 1.6 | 3.0 | V  |
|---------------------|----------------------------------|--------------------------------------|---------------------------------|-----|-----|-----|----|
| r <sub>DS(on)</sub> | Drain to Source On Resistance    | I <sub>D</sub> = 20A,                | $T_{\rm J} = 25^{\rm o}{\rm C}$ | -   | 41  | 52  | mΩ |
|                     |                                  | V <sub>GS</sub> = 10V                | $T_J = 175^{\circ}C(Note 4)$    | -   | 102 | 128 | mΩ |
|                     |                                  | I <sub>D</sub> = 20A,                | $T_J = 25^{\circ}C$             |     | 47  | 55  | mΩ |
|                     |                                  | $V_{GS}$ = 4.5 $V$                   | $T_J = 175^{\circ}C(Note 4)$    |     | 115 | 135 | mΩ |

### **Dynamic Characteristics**

| C <sub>iss</sub> | Input Capacitance             | V <sub>DS</sub> = 25V, V <sub>GS</sub> = 0V,<br>f = 1MHz |                       | - | 1280 | -  | pF |
|------------------|-------------------------------|----------------------------------------------------------|-----------------------|---|------|----|----|
| C <sub>oss</sub> | Output Capacitance            |                                                          |                       | - | 214  | -  | pF |
| C <sub>rss</sub> | Reverse Transfer Capacitance  |                                                          |                       | - | 33   | -  | pF |
| $R_g$            | Gate Resistance               | f = 1MHz                                                 |                       | - | 2.5  | -  | Ω  |
| $Q_{g(ToT)}$     | Total Gate Charge             | $V_{GS}$ = 0 to 10V                                      | V <sub>DD</sub> = 50V | - | 39   | 43 | nC |
| $Q_{g(th)}$      | Threshold Gate Charge         | $V_{GS} = 0 \text{ to } 2V$ $I_D = 20A$                  |                       | - | 2.3  | 3  | nC |
| $Q_{gs}$         | Gate to Source Gate Charge    |                                                          | -                     | - | 3.5  | -  | nC |
| $Q_{gd}$         | Gate to Drain "Miller" Charge |                                                          |                       | - | 11   | ı  | nC |

# **Switching Characteristics**

| t <sub>on</sub>     | Turn-On Time        |                                              | - | -  | 27 | ns |
|---------------------|---------------------|----------------------------------------------|---|----|----|----|
| t <sub>d(on)</sub>  | Turn-On Delay Time  |                                              | - | 7  | -  | ns |
| t <sub>r</sub>      | Rise Time           | V <sub>DD</sub> = 50V, I <sub>D</sub> = 20A, | - | 12 | -  | ns |
| t <sub>d(off)</sub> | Turn-Off Delay Time | $V_{GS} = 10V, R_{GEN} = 8.2\Omega$          | - | 38 | -  | ns |
| t <sub>f</sub>      | Fall Time           |                                              | - | 5  | -  | ns |
| t <sub>off</sub>    | Turn-Off Time       |                                              | - | -  | 47 | ns |


### **Drain-Source Diode Characteristics**

| $V_{SD}$        | ISOURCE TO DRAIN DIOGE VOITAGE | I <sub>SD</sub> = 20A, V <sub>GS</sub> = 0V           | - | -   | 1.25 | V  |
|-----------------|--------------------------------|-------------------------------------------------------|---|-----|------|----|
|                 |                                | $I_{SD} = 10A, V_{GS} = 0V$                           | - | -   | 1.0  | V  |
| T <sub>rr</sub> | Reverse Recovery Time          | I <sub>F</sub> = 20A, dI <sub>SD</sub> /dt = 100A/μs, | - | 77  | 99   | ns |
| Q <sub>rr</sub> | Reverse Recovery Charge        | V <sub>DD</sub> =80V                                  | - | 221 | 305  | nC |

#### Notes:

4: The maximum value is specified by design at  $T_J$  = 175°C. Product is not tested to this condition in production.

### **Typical Characteristics**



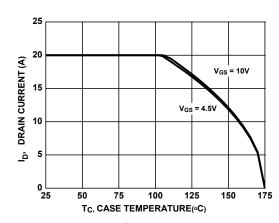



Figure 1. Normalized Power Dissipation vs Case Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

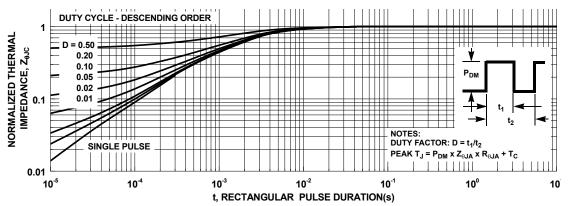



Figure 3. Normalized Maximum Transient Thermal Impedance

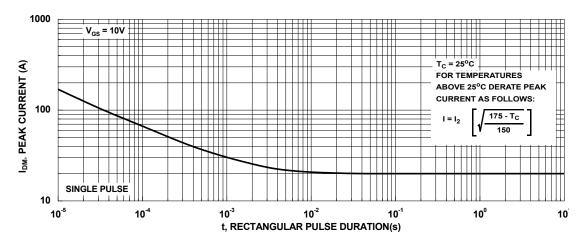
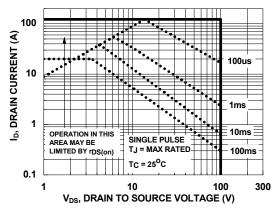




Figure 4. Peak Current Capability

### **Typical Characteristics**



100

(Y)

If R = 0

If R = 0

If R ≠ 0

If R ≠ 0

If R ≠ 0

If R = 0

If R ≠ 0

If R = 0

If R ≠ 0

If R = 10

If R ≠ 0

If R ≠ 0

If R ≠ 0

If R ≠ 0

If R = 0

If R ≠ 0

If R ≠ 0

If R ≠ 0

If R = 0

If R ≠ 0

If R ≠ 0

If R = 0

If R ≠ 0

If R ≠ 0

If R = 0

If R ≠ 0

If R = 0

If R ≠ 0

If R = 0

If R ≠ 0

If R ≠ 0

If R = 0

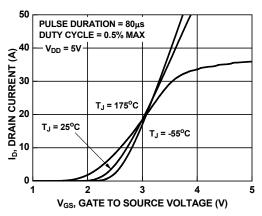
If R ≠ 0

If R = 0

If R ≠ 0

If R ≠ 0

If R = 0


If R ≠ 0

If R

Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to On Semiconductor Application Notes AN7514 and AN7515  $\,$ 

Figure 6. Unclamped Inductive Switching Capability



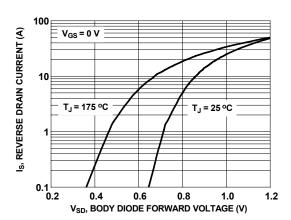
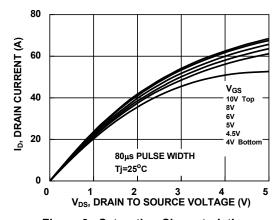




Figure 7. Transfer Characteristics

Figure 8. Forward Diode Characteristics



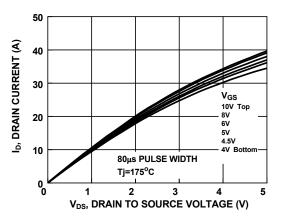



Figure 9. Saturation Characteristics

Figure 10. Saturation Characteristics

# **Typical Characteristics**

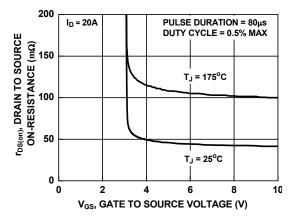



Figure 11. Rdson vs Gate Voltage

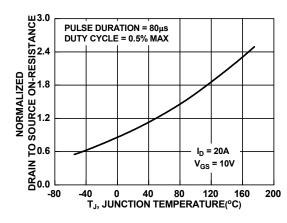



Figure 12. Normalized Rdson vs Junction Temperature

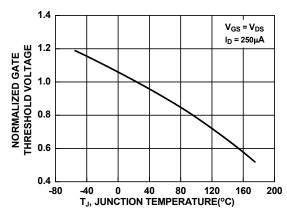



Figure 13. Normalized Gate Threshold Voltage vs
Temperature

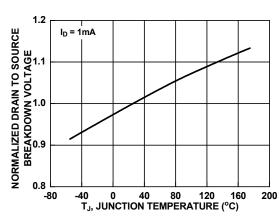



Figure 14. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

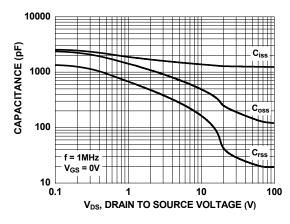



Figure 15. Capacitance vs Drain to Source Voltage

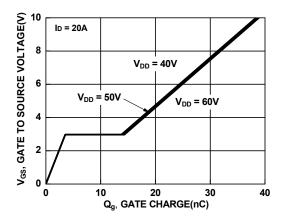



Figure 16. Gate Charge vs Gate to Source Voltage



ON Semiconductor and war are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fana: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60\_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2951 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B