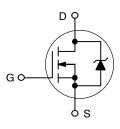
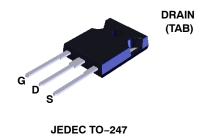
<u>MOSFET</u> – Power, N-Channel, UltraFET

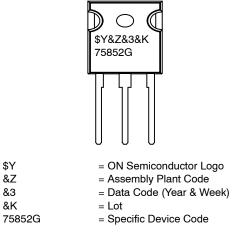
75 V, 150 A, 0,016 Ω

HUFA75852G3-F085


Features


- Ultra Low On–Resistance $- R_{DS(ON)} = 0.016 \Omega, V_{GS} = 10 V$
- Peak Current vs Pulse Width Curve
- UIS Rating Curve
- AEC-Q101 Qualified and PPAP Capable
- This Device is Pb-Free and is RoHS Compliant

ON Semiconductor®


www.onsemi.com

CASE 340CK

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Symbol		Value	Unit	
V _{DSS}	Drain to Source Voltage (Note 1)		150	V
V _{DGR}	Gate to Gate Voltage (R_{GS} = 20 k Ω) (Note 1)		150	V
V _{GS}	Gate to Source Voltage		±20	V
I _D	Drain Current Continuous (T _C = 25°C, V _{GS} = 10 V) (Figure 2)		75	А
	Drain Current Continuous	75	А	
I _{DM}	Pulsed Drain Current		Figure 4	
UIS	Pulsed Avalanche Rating		Figures 6, 14, 15	
P _D	Power Dissipation	$(T_{\rm C} = 25^{\circ}{\rm C})$	500	W
		– Derate Above 25°C	3.33	W/°C
T _J , T _{STG}	Operating and Storage Temperature		–55 to +175	°C
TL	Maximum Temperature	Leads at 0.063 in (1.6 mm) from Case for 10 s	300	°C
T _{pkg}	for Soldering	Package Body for 10 s	260	°C

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, Unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Starting $T_J = 25^{\circ}C$ to $150^{\circ}C$.

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Package	Brand
HUFA75852G3-F085	TO-247	75852G

ELECTRICAL CHARACTERISTICS (T _C = 2	25°C unless otherwise noted)
--	------------------------------

Q_{rr}

Reverse Recovery Charge

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
FF STATE CH	IARACTERISTICS				•		
B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V (Figure 11)		150			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 140 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 135 \text{ V}, V_{GS} = 0 \text{ V}, T_C = 150^{\circ}\text{C}$				1	μΑ
						250	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}$				±100	nA
N STATE CH	ARACTERISTICS						
V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 25$	0 μA (Figure 10)	2.0		4.0	V
R _{DS(ON)}	Drain to Source On Resistance	I _D = 75 A, V _{GS} = 10 V (Figure 9)			0.013	0.016	Ω
HERMAL CH	ARACTERISTICS	•					
$R_{ ext{ heta}JC}$	Thermal Resistance Junction to Case	TO-247				0.30	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient					30	°C/W
	HARACTERISTICS						
t _{on}	Turn-On Time	$V_{DD} = 75 V$ $I_{D} = 75 A$ $V_{GS} = 10 V$ $R_{GS} = 2.0 \Omega$ (Figures 18, 19)				260	ns
t _{d(on)}	Turn-On Delay Time				22		ns
tr	Rise Time				151		ns
t _{d(off)}	Turn-Off Delay Time				82		ns
t _f	Fall Time				107		ns
t _{off}	Turn-Off Time					285	ns
ATE CHARGE	E CHARACTERISTICS						
Q _{g(TOT)}	Total Gate Charge	$\label{eq:VGS} \begin{array}{l} V_{GS} = 0 \ V \ \text{to} \ 20 \ V \\ V_{DD} = 75 \ V \\ I_D = 75 \ A \\ I_G(\text{REF}) = 1.0 \ \text{mA} \end{array}$			400	480	nC
Q _{g(10)}	Total Gate Charge 10 V				215	260	nC
Q _{g(TH)}	Threshold Gate Charge	V_{GS} = 0 V to 2 V	(Figures 13,16,17)		15	17.5	nC
Q _{gs}	Gate to Source Gate Charge	V _{DD} = 75 V, I _D = 75			25		nC
Q _{gd}	Gate to Drain "Miller" Charge	I _{g(REF)} = 1.0 mA, (Figures 13,16, 17)			66		nC
APACITANCE	CHARACTERISTICS						-
C _{ISS}	Input Capacitance	$V_{DS} = 25 V, V_{GS} =$	0 V, f = 1 MHz		7690		pF
C _{OSS}	Output Capacitance	- (Figure 12) -			1650		pF
C _{RSS}	Reverse Transfer Capacitance				535		pF
OURCE TO D	RAIN DIODE CHARACTERISTICS	-			-		
V_{SD}	Source to Drain Diode Voltage I _{SD} = 75 A					1.25	V
		I _{SD} = 35 A				1.00	V
t _{rr}	Reverse Recovery Time	I _{SD} = 75 A, dI _{SD} /dt = 100 A/μs				260	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1830

nC

TYPICAL CHARACTERISTICS

(T_C = 25° C unless otherwise noted)

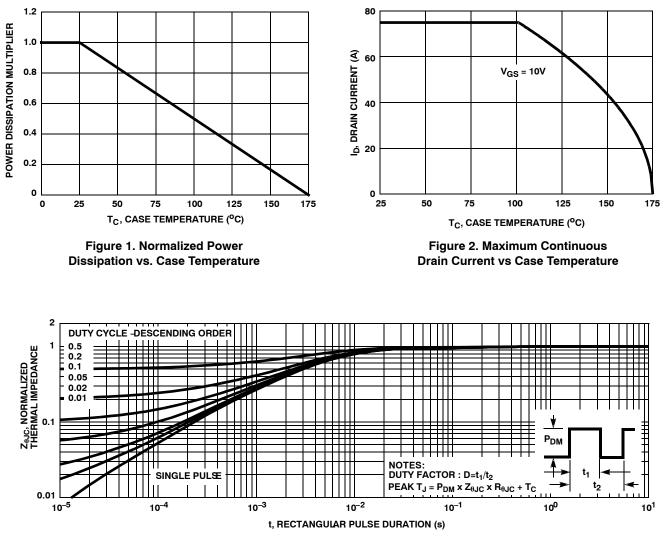


Figure 3. Normalized Maximum Transient Thermal Impedance

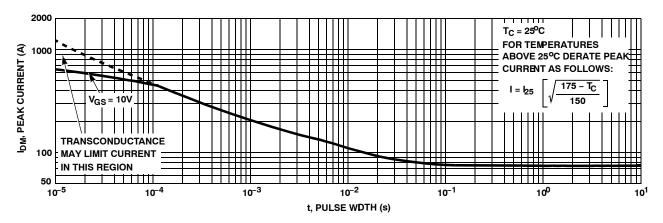


Figure 4. Peak Current Capability

TYPICAL CHARACTERISTICS (Continued)

 $T_C = 25^{\circ}C$ unless otherwise noted

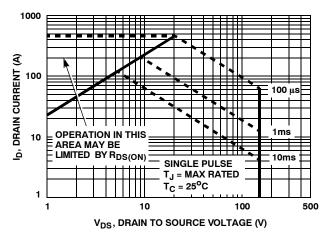


Figure 5. Forward Bias Safe Operating Area

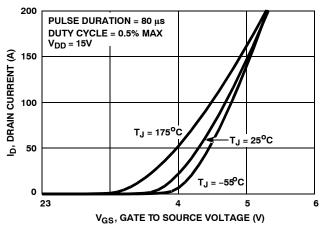
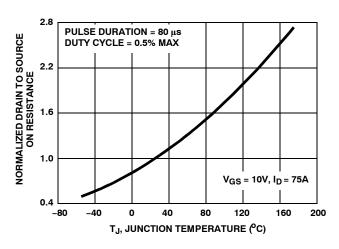



Figure 7. Transfer Characteristics

NOTE: Refer to ON Semiconductor Application Notes AN-7514 and AN-7515

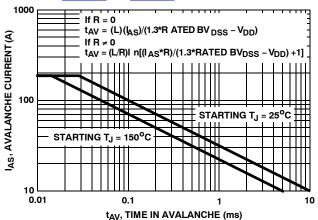
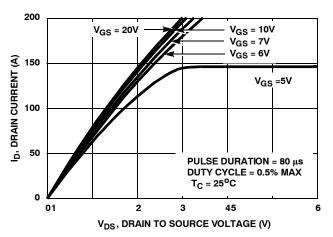
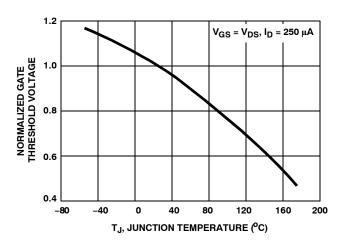
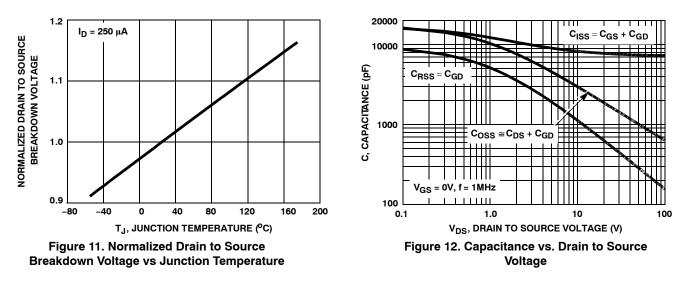




Figure 6. Unclamped Inductive Switching Capability



TYPICAL CHARACTERISTICS (Continued)

(T_C = 25° C unless otherwise noted)

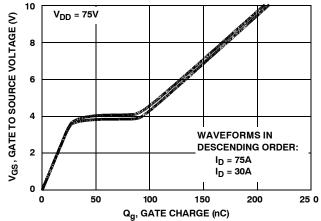


Figure 13. Gate Charge Waveforms for Constant Gate Current

TEST CIRCUITS AND WAVEFORMS

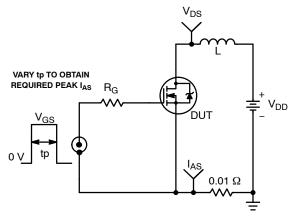


Figure 14. Unclamped Energy Test Curcuit

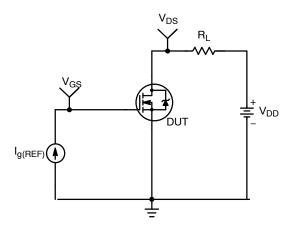


Figure 16. Gate Charge Test Circuit

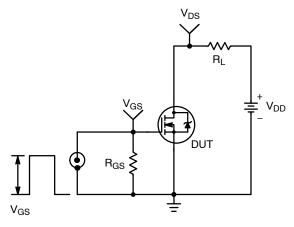
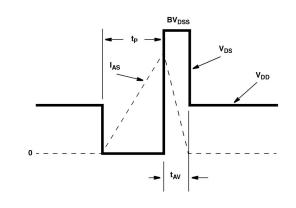
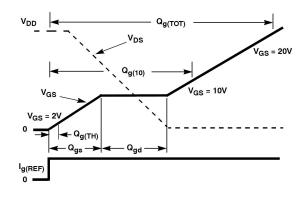




Figure 18. Switching Time Test Circuit

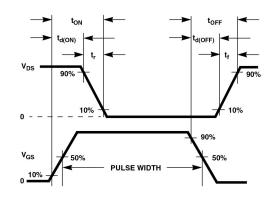
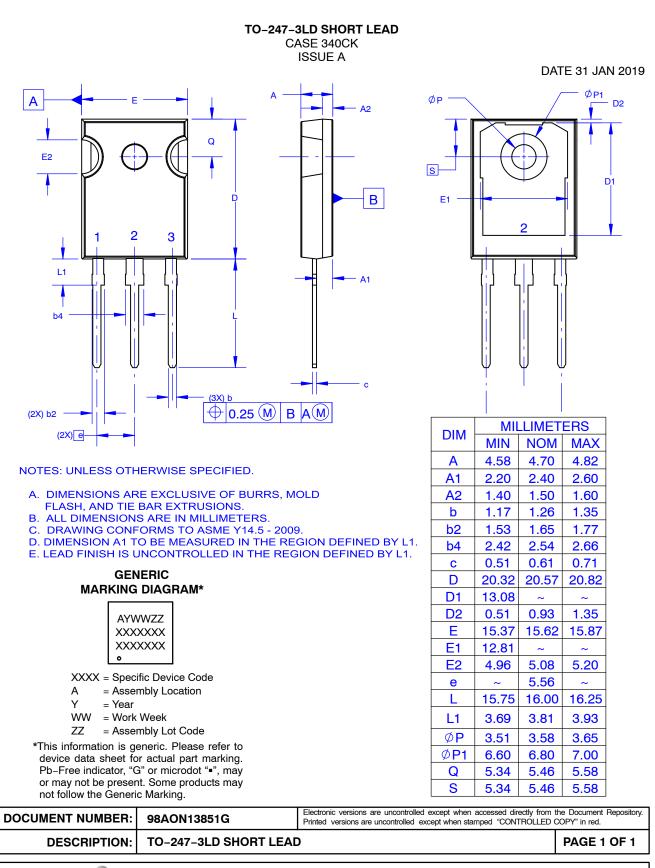



Figure 19. Switching Time Waveforms

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UF0-7B