STEALTH[™] Diode

15 A, 600 V

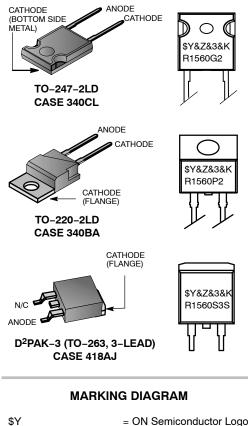
ISL9R1560G2, ISL9R1560P2, ISL9R1560S3S

Description

The ISL9R1560G2, ISL9R1560P2, ISL9R1560S3S is a STEALTH diode optimized for low loss performance in high frequency hard switched applications. The STEALTH family exhibits low reverse recovery current (I_{rr}) and exceptionally soft recovery under typical operating conditions. This device is intended for use as a free wheeling or boost diode in power supplies and other power switching applications. The low I_{rr} and short ta phase reduce loss in switching transistors. The soft recovery minimizes ringing, expanding the range of conditions under which the diode may be operated without the use of additional snubber circuitry. Consider using the STEALTH diode with an SMPS IGBT to provide the most efficient and highest power density design at lower cost.

Features

- Stealth Recovery $t_{rr} = 29.4$ ns (@ $I_F = 15$ A)
- Max Forward Voltage, $V_F = 2.2 V (@ T_C = 25^{\circ}C)$
- 600 V Reverse Voltage and High Reliability
- Avalanche Energy Rated
- These Devices are Pb-Free and are RoHS Compliant


Applications

- SMPS
- Hard Switched PFC Boost Diode
- UPS Free Wheeling Diode
- Motor Drive FWD
- SMPS FWD
- Snubber Diode

ON Semiconductor®

www.onsemi.com

\$Y	= ON Semiconductor Logo
&Z	= Assembly Plant Code
&3	= Numeric Date Code
&K	= Lot Code
R1560G2, R1560P2,	
R1560S3S	= Specific Device Code

SYMBOL

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

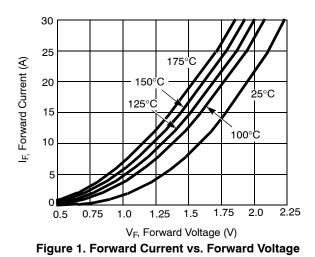
DEVICE MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Ratings	Unit
Repetitive Peak Reverse Voltage	V _{RRM}	600	V
Working Peak Reverse Voltage	V _{RWM}	600	V
DC Blocking Voltage	V _R	600	V
Average Rectified Forward Current ($T_C = 145^{\circ}C$)	I _{F(AV)}	15	А
Repetitive Peak Surge Current (20 kHz Square Wave)	I _{FRM}	30	А
Non-repetitive Peak Surge Current (Halfwave 1 Phase 60 Hz)	I _{FSM}	200	А
Power Dissipation	PD	150	W
Avalanche Energy (1 A, 40 mH)	E _{AVL}	20	mJ
Operating and Storage Temperature Range	T _{J,} T _{STG}	-55 to +175	°C
Maximum Temperature for Soldering Leads at 0.063 in (1.6 mm) from Case for 10 s Package Body for 10 s, See Techbrief TB334	T _L T _{PKG}	300 260	°C °C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

PACKAGE MARKING AND ORDERING INFORMATION

Device	Device Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
ISL9R1560G2	R1560G2	TO-247-2LD	Tube	N/A	N/A	30
ISL9R1560P2	R1560P2	TO-220-2LD	Tube	N/A	N/A	50
ISL9R1560S3ST	R1560S3S	TO-263(D ² -PAK)	Reel	13″ dia	24 mm	800


THERMAL CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Thermal Resistance Junction to Case	$R_{\theta JC}$		-	-	1.0	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	TO-247	-	-	30	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	TO-220	-	-	62	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	TO-263	_	_	62	°C/W

Junction Capacitance	I _R V _F	V _R = 600 V	$T_C = 25^{\circ}C$ $T_C = 125^{\circ}C$	-	-	100	μΑ
On State Characteristics Instantaneous Forward Voltage Dynamic Characteristics Junction Capacitance Switching Characteristics		V _R = 600 V			-	100	^
Instantaneous Forward Voltage Dynamic Characteristics Junction Capacitance Switching Characteristics	V _F		T _C = 125°C				μΑ
Instantaneous Forward Voltage Oynamic Characteristics Junction Capacitance Switching Characteristics	V _F	-	-	-	-	1.0	mA
Dynamic Characteristics Junction Capacitance Switching Characteristics	V_{F}						
Junction Capacitance Switching Characteristics		I _F = 15 A	$T_{C} = 25^{\circ}C$	-	1.8	2.2	V
Switching Characteristics			T _C = 125°C	-	1.65	2.0	V
Switching Characteristics							
<u> </u>	CJ	$V_{R} = 10 \text{ V}, \text{ I}_{F} = 0 \text{ A}$		-	62	_	pF
Reverse Recovery Time							
	t_{rr} I _F = 1 A, dI _F /dt = 100 A/µs, V _R = 30 V			-	25	30	ns
		I_F = 15 A, dI_F/dt = 100 A/µs, V_R = 30 V		-	35	40	ns
Reverse Recovery Time	t _{rr}	$I_{F} = 15 \text{ A},$ $dI_{F}/dt = 200 \text{ A}/\mu\text{s},$ $V_{B} = 390 \text{ V},$		-	29.4	-	ns
Reverse Recovery Current	I _{rr}			-	3.5	-	Α
Reverse Recovered Charge	Q _{rr}	$T_{C} = 25^{\circ}C$	$T_{\rm C} = 25^{\circ}{\rm C}$		57	-	nC
Reverse Recovery Time	t _{rr}			-	90	-	ns
Softness Factor (t _b / _{ta})	S			-	2.0	-	
Reverse Recovery Current	I _{rr}			-	5.0	-	Α
Reverse Recovered Charge	Q _{rr}			-	275	-	nC
Reverse Recovery Time	t _{rr}	I _F = 15 A, dI _F /dt = 800 A/μs, V _R = 390 V, T _C = 125°C		-	52	-	ns
Softness Factor (t _b / _{ta})	S			-	1.36	-	
Reverse Recovery Current	I _{rr}			_	13.5	-	Α
Reverse Recovered Charge	Q _{rr}			_	390	_	nC
Maximum di/dt During t _b	••			1	030	_	1

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

TYPICAL PERFORMANCE CURVES

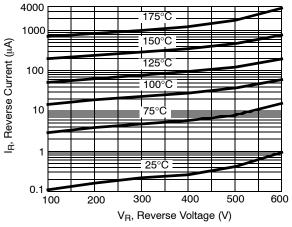


Figure 2. Reverse Current vs. Reverse Voltage

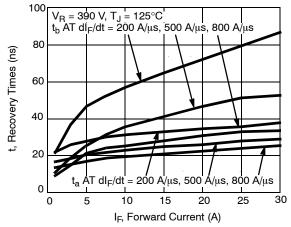
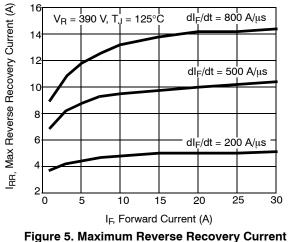



Figure 3. t_a and t_b Curves vs. Forward Current

vs. Forward Current

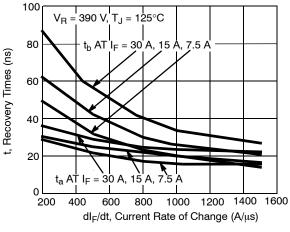
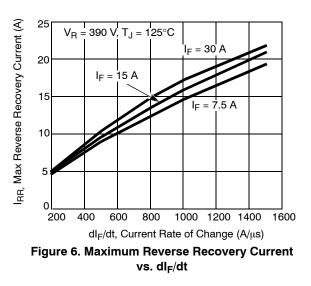
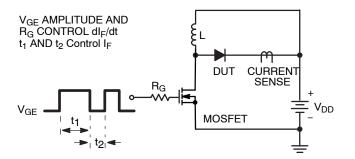



Figure 4. t_a and t_b Curves vs. $dI_{\mbox{\scriptsize F}}/dt$



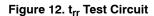

TYPICAL PERFORMANCE CURVES (continued)

Figure 11. Normalized Maximum Transient Thermal Impedance

TEST CIRCUIT AND WAVEFORMS

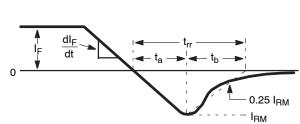


Figure 13. t_{rr} Waveforms and Definitions

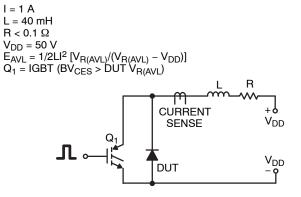
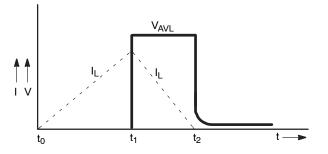
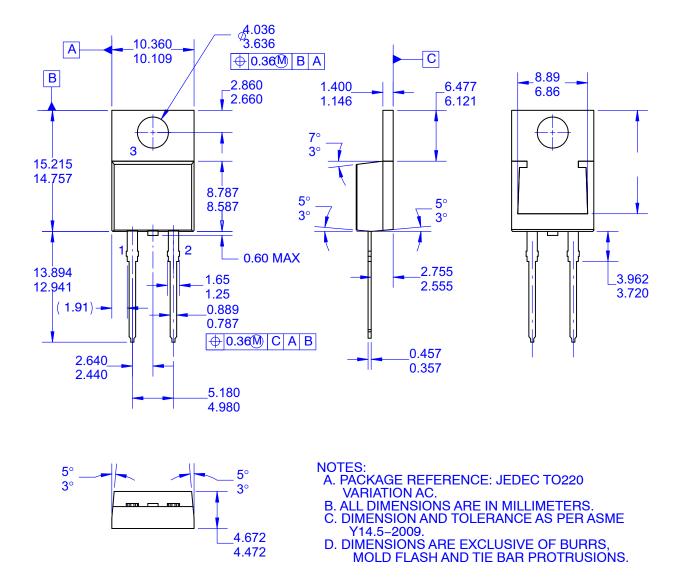


Figure 14. Avalanche Energy Test Circuit




Figure 15. Avalanche Current and Voltage Waveforms

STEALTH is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

TO-220-2LD CASE 340BA ISSUE O

DATE 31 AUG 2016

DOCUMENT NUMBER:	98AON13831G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	TO-220-2LD		PAGE 1 OF 1				
ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the							

rights of others.

1

MILLIMETERS

NOM

4.70

2.40

1.50

1.26

1.65

0.61

20.57

16.57

0.93

15.62

~

5.08

11.12

16.00

3.81

3.58

6.73

5.46

5.46

MAX

4.82

2.66

1.70

1.35

1.77

0.71

20.82

16.77

1.35

15.87

~

5.20

~

16.25

3.93

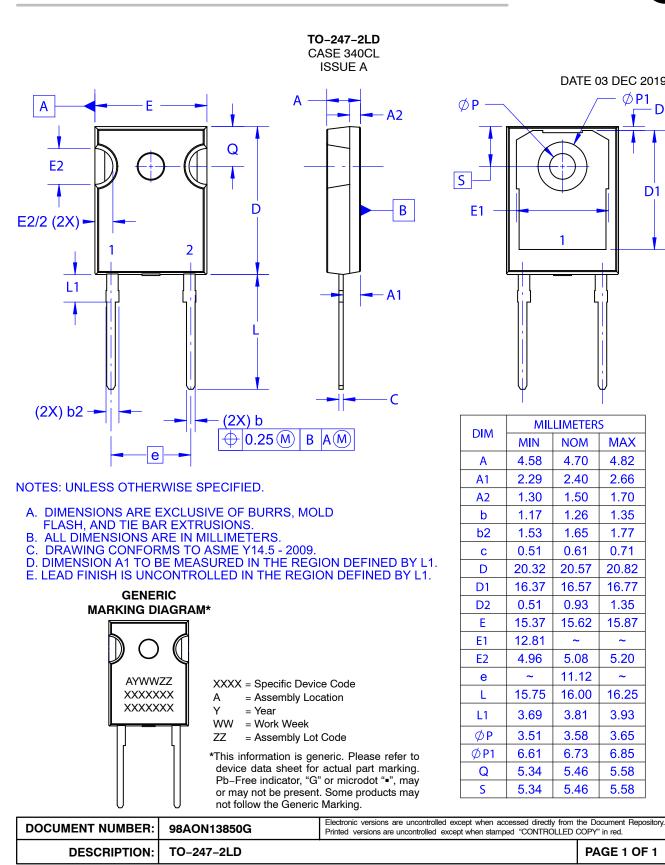
3.65

6.85

5.58

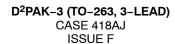
5.58

PAGE 1 OF 1

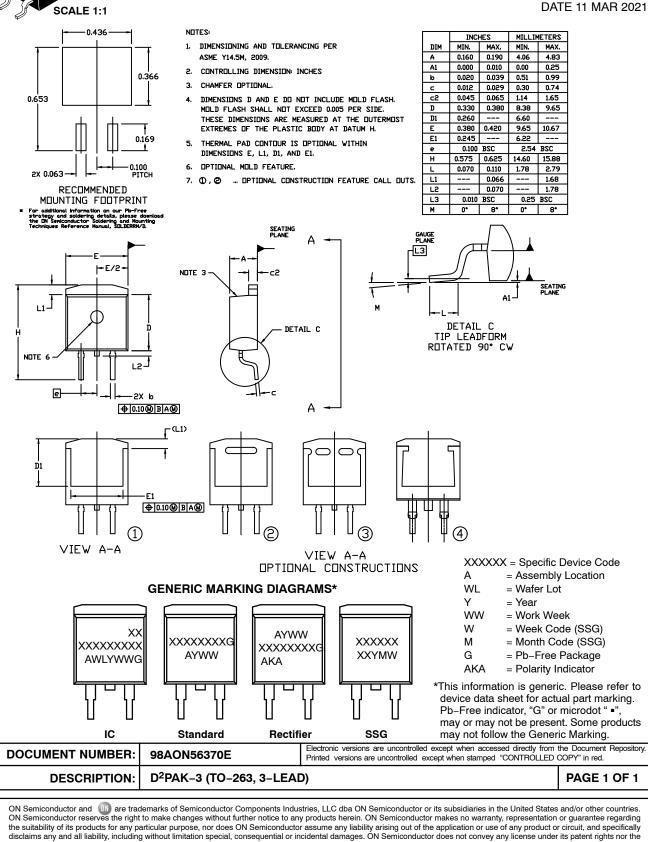

DATE 03 DEC 2019

ØP1

D2


D1




ON Semiconductor and 🔘 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

© Semiconductor Components Industries, LLC, 2018

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Diodes - General Purpose, Power, Switching category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

RD0306T-H BAQ33-GS18 BAV17-TR BAV19-TR 1N3611 NTE156A NTE525 NTE571 NTE574 NTE5804 NTE5806 NTE6244 1SS181-TP 1SS193,LF 1SS400CST2RA SDAA13 SHN2D02FUTW1T1G LS4151GS08 1N4449 1N456A 1N4934-E3/73 1N914B 1N914BTR RFUH20TB3S BAS 28 E6327 BAV199-TP BAW56DWQ-7-F BAW75-TAP MM230L-CAA IDW40E65D1 JAN1N3600 LL4151-GS18 053684A SMMSD4148T3G 707803H NSVDAN222T1G SP000010217 ACDSW4448-HF CDSZC01100-HF BAV199E6433HTMA1 BAV70M3T5G SMBT2001T1G NTE5801 NTE5800 NTE5808 NTE6240 NTE6248 DLM10C-AT1 BAS28-7 BAW56HDW-13