ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ISL9V5036S3S / ISL9V5036P3 / ISL9V5036S3

EcoSPARK® 500mJ, 360V, N-Channel Ignition IGBT

General Description

The ISL9V5036S3S, ISL9V5036P3, and ISL9V5036S3 are the next generation IGBTs that offer outstanding SCIS capability in the D2-Pak (TO-263) and TO-220 plastic package. These devices are intended for use in automotive ignition circuits, specifically as coil drivers. Internal diodes provide voltage clamping without the need for external components.

EcoSPARK® devices can be custom made to specific clamp voltages. Contact your nearest ON Semiconductor sales office for more information.

Formerly Developmental Type 49443

Applications

- · Automotive Ignition Coil Driver Circuits
- · Coil-On Plug Applications

Features

- Industry Standard D²-Pak package
 SCIS Energy = 500mJ at T_J = 25°C
- Logic Level Gate Drive
- · Qualified to AEC Q101
- · RoHS Compliant

Package Symbol COLLECTOR JEDEC TO-262AA JEDEC TO-263AB JEDEC TO-220AB E_CG D2-Pak COLLECTOR COLLECTOR (FLANGE) (FLANGE)

Device Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units	
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	390	V	
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V	
E _{SCIS25}	At Starting $T_J = 25$ °C, $I_{SCIS} = 38.5$ A, $L = 670 \mu Hy$	500	mJ	
E _{SCIS150}	At Starting $T_J = 150$ °C, $I_{SCIS} = 30$ A, $L = 670 \mu Hy$	300	mJ	
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	46	А	
I _{C110}	Collector Current Continuous, At T _C = 110°C, See Fig 9	31	А	
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V	
P _D	Power Dissipation Total T _C = 25°C	250	W	
_	Power Dissipation Derating T _C > 25°C	1.67	W/°C	
TJ	Operating Junction Temperature Range	-40 to 175	°C	
T _{STG}	Storage Junction Temperature Range	-40 to 175	°C	
T _L	Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)	300	°C	
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260	°C	
ESD	Electrostatic Discharge Voltage at 100pF, 1500Ω	4	kV	

Device Marking		Device		Package	Reel Size)	Tape Width		Quanti
V5036S		ISL9V5036S3ST		TO-263AB	330mm		24mm		800
V5036P		ISL9V5036P3		TO-220AA	Tube		N/A		50
V5036S		ISL9V5036S3		TO-262AA	Tube		N/A		50
V50	36S	ISL9V5036S3S		TO-263AB	Tube	Tube			50
lectrica	al Chara	acteristics T _A = 25°	C unl	ess otherwise	noted				
Symbol		Parameter			Test Conditions		Тур	Max	Uni
ff State	Characte	ristics							
BV _{CER}	Collector to Emitter Breakdown Voltage		age	$I_C = 2\text{mA}, V_{GE} = 0,$ $R_G = 1\text{K}\Omega, \text{ See Fig. 15}$ $T_{J} = -40 \text{ to } 150^{\circ}\text{C}$		330	360	390	V
BV _{CES}	Collector to Emitter Breakdown Voltage		age	$I_C = 10$ mA, $V_{GE} = 0$, $R_G = 0$, See Fig. 15 $T_J = -40$ to 150°C		360	390	420	V
BV _{ECS}	Emitter to Collector Breakdown Voltage			I _C = -75mA, V T _C = 25°C	30	-	-	V	
BV _{GES}	Gate to Er	mitter Breakdown Voltage		$I_{GES} = \pm 2mA$		±12	±14	-	V
I _{CER}	Collector t	o Emitter Leakage Curren	nt	$V_{CER} = 250V$	T _C = 25°C	-	-	25	μA
				$R_G = 1KΩ$, See Fig. 11	T _C = 150°C	-	-	1	m
I _{ECS}	Emitter to	Collector Leakage Curren	nt	$V_{EC} = 24V$, Se	$T_C = 25^{\circ}C$	-	-	1	m
				Fig. 11	$T_C = 150$ °C	-	-	40	m/
R ₁	Series Gate Resistance					-	75	-	Ω
R ₂	Gate to Er	nitter Resistance				10K	-	30K	Ω
n State	Characte								
V _{CE(SAT)}	Collector t	o Emitter Saturation Volta	ge	$I_C = 10A,$ $V_{GE} = 4.0V$	T _C = 25°C, See Fig. 4	-	1.17	1.60	V
V _{CE(SAT)}	Collector t	o Emitter Saturation Volta	ge	$I_C = 15A,$ $V_{GE} = 4.5V$	T _C = 150°C	-	1.50	1.80	V
ynamic	Characte	ristics							
Q _{G(ON)}	Gate Cha	rge		I _C = 10A, V _{CE} = 12V, V _{GE} = 5V, See Fig. 14		-	32	-	n(
V _{GE(TH)}	Gate to E	mitter Threshold Voltage		$I_C = 1.0 \text{mA},$	$T_C = 25$ °C	1.3	-	2.2	٧
				$V_{CE} = V_{GE}$, See Fig. 10	T _C = 150°C	0.75	-	1.8	٧
V_{GEP}	Gate to E	mitter Plateau Voltage		I _C = 10A,	$V_{CE} = 12V$	-	3.0	-	V
witching) Charact	eristics							
t _{d(ON)R}	Current To	ırn-On Delay Time-Resisti	ive	$V_{CE} = 14V, R_{L}$	-	0.7	4	μ	
t _{rR}	Current R	ise Time-Resistive		$V_{GE} = 5V, R_G$ $T_J = 25$ °C, Se	-	2.1	7	μ	
$t_{d(OFF)L}$	Current To	ırn-Off Delay Time-Inducti	ive	$V_{CE} = 300V, L$	-	10.8	15	μ	
t _{fL}		all Time-Inductive		$V_{GE} = 5V, R_G$ $T_J = 25$ °C, Se	-	2.8	15	μ	
SCIS	Self Clam	ped Inductive Switching		$T_J = 25$ °C, L = $R_G = 1$ KΩ, V_C Fig. 1 & 2	-	-	500	m	

 $R_{\theta JC}$

Thermal Resistance Junction-Case

TO-263, TO-220, TO-262

0.6

°C/W

Typical Characteristics

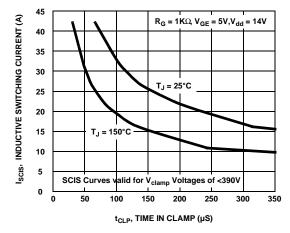


Figure 1. Self Clamped Inductive Switching Current vs Time in Clamp

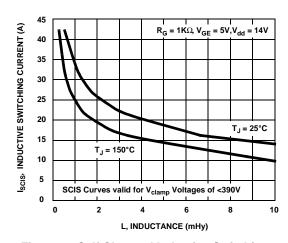


Figure 2. Self Clamped Inductive Switching Current vs Inductance

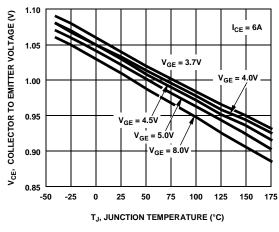


Figure 3. Collector to Emitter On-State Voltage vs Junction Temperature

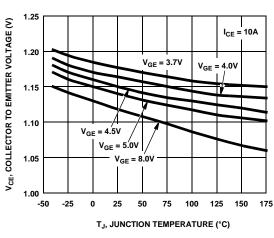


Figure 4.Collector to Emitter On-State Voltage vs Junction Temperature

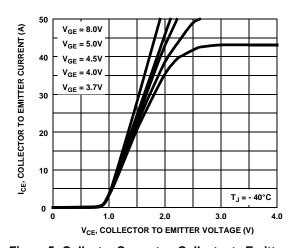


Figure 5. Collector Current vs Collector to Emitter On-State Voltage

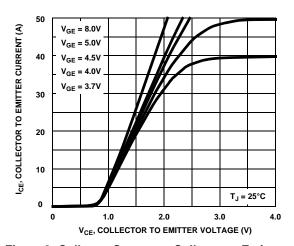


Figure 6. Collector Current vs Collector to Emitter On-State Voltage

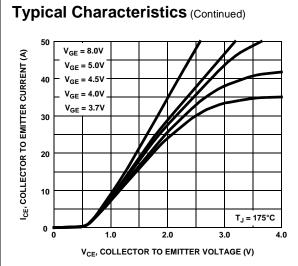


Figure 7. Collector to Emitter On-State Voltage vs Collector Current

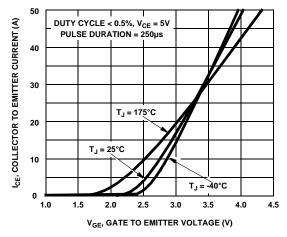


Figure 8. Transfer Characteristics

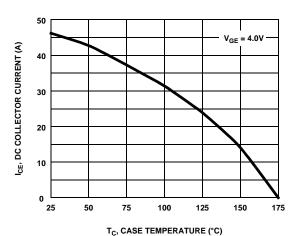


Figure 9. DC Collector Current vs Case Temperature

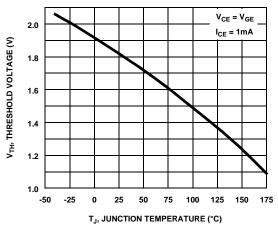


Figure 10. Threshold Voltage vs Junction Temperature

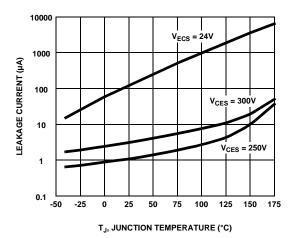


Figure 11. Leakage Current vs Junction Temperature

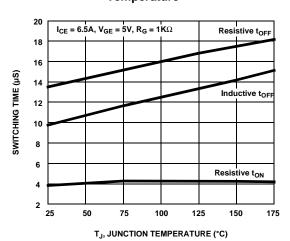


Figure 12. Switching Time vs Junction Temperature

Typical Characteristics (Continued) Straightful Strai

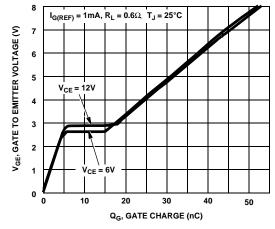
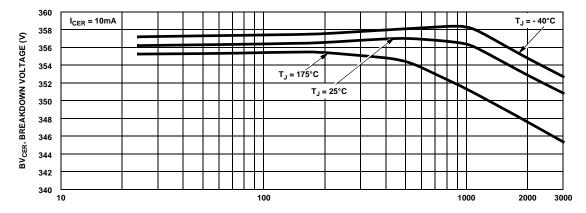


Figure 13. Capacitance vs Collector to Emitter Voltage


V_{CE}, COLLECTOR TO EMITTER VOLTAGE (V)

10

15

20

Figure 14. Gate Charge

 $R_{\mbox{\scriptsize G}},$ SERIES GATE RESISTANCE (kΩ)

Figure 15. Breakdown Voltage vs Series Gate Resistance

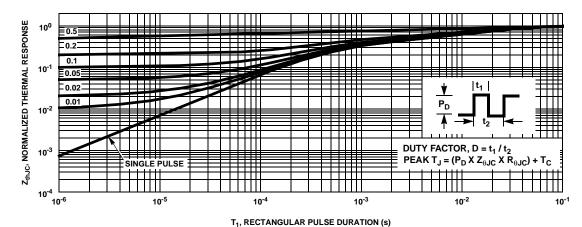
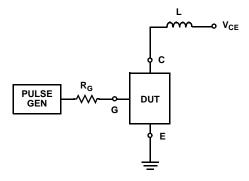



Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

Test Circuits and Waveforms

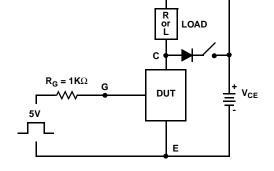


Figure 17. Inductive Switching Test Circuit

Figure 18. t_{ON} and t_{OFF} Switching Test Circuit



Figure 19. Energy Test Circuit

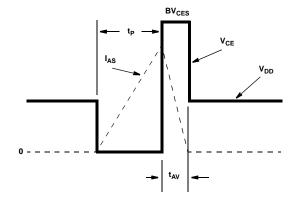
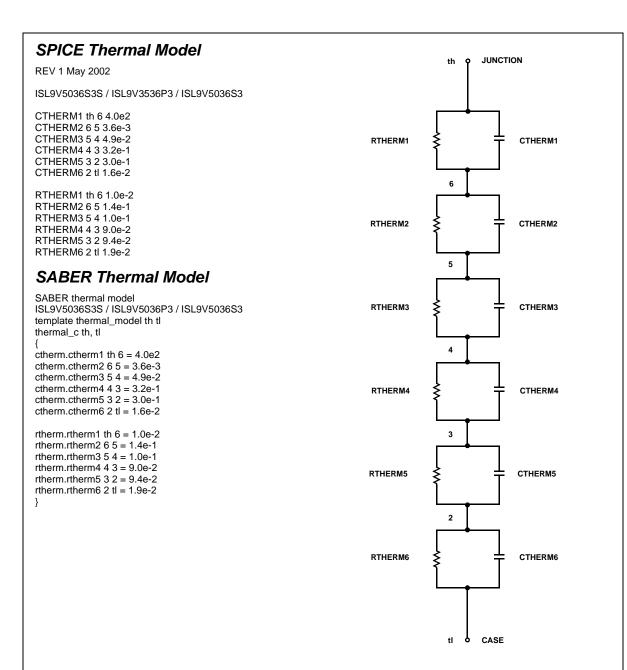



Figure 20. Energy Waveforms

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Motor/Motion/Ignition Controllers & Drivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 MSVGW54-14-5 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E 26700 LV8281VR-TLM-H BA5839FP-E2 IRAM236-1067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B STK672-630CN-E TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVB54 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 MSVTA120 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW45-14-5 MSVGW54-14-4 STK984-091A-E MP6519GQ-Z LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 NCP81382MNTXG TDA21801 LB11851FA-BH NCV70627DQ001R2G