N-Channel Switch

J111, J112, J113, MMBFJ111, MMBFJ112, MMBFJ113

Features

- This Device is Designed for Low Level Analog Switching, Sample and Hold Circuits and Chopper Stabilized Amplifiers
- Sourced from Process 51
- Source & Drain are Interchangeable
- These are Pb-Free Devices

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted) (Note 1, 2)

Symbol	Parameter	Value	Unit
V _{DG}	Drain-Gate Voltage	35	V
V _{GS}	Gate-Source Voltage	-35	V
I _{GF}	Forward Gate Current	50	mA
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to 150	°C

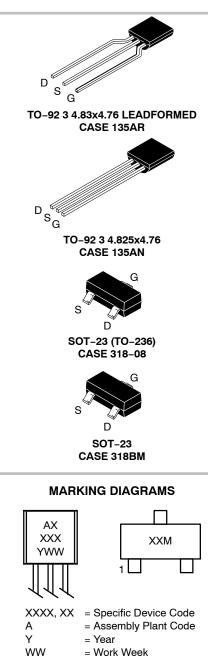
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. These ratings are based on a maximum junction temperature of 150°C.

2. These are steady-state limits. ON Semiconductor should be consulted on applications involving pulsed or low-duty-cycle operations.

		Ma		
Symbol	Parameter	J111 / J112 / J113 (Note 3)	MMBFJ111 / MMBFJ112 / MMBFJ113 (Note 4)	Unit
PD	Total Device Dissipation	625	350	mW
	Derate Above 25°C	5.0	2.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	125	-	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient	200	357	°C/W

THERMAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)


3. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.

 Device mounted on FR-4 PCB 36 mm x 18 mm x 1.5 mm; mounting pad for the collector lead minimum 6 cm².

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

= Date Code

Μ

See detailed ordering and shipping information on page 6 of this data sheet.

J111, J112, J113, MMBFJ111, MMBFJ112, MMBFJ113

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Symbol	Parameter	Test Conditi	Test Condition		Max	Unit
OFF CHARA	ACTERISTICS					-
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = -1.0 \ \mu A, \ V_{DS} = 0$	$I_G = -1.0 \ \mu A, \ V_{DS} = 0$		_	V
I _{GSS}	Gate Reverse Current	$V_{GS} = -15 \text{ V}, \text{ V}_{DS} = 0$	$V_{GS} = -15 \text{ V}, \text{ V}_{DS} = 0$		-1.0	nA
V _{GS} (off)	Gate-Source Cut-Off Voltage	V_{DS} = 5 V, I_D = 1.0 μ A	111	-3.0	-10.0	V
			112	-1.0	-5.0	
			113	-0.5	-3.0	
I _D (off)	Drain Cutoff Leakage Current	V _{DS} = 5.0 V, V _{GS} = -10 V	$V_{DS} = 5.0 \text{ V}, V_{GS} = -10 \text{ V}$		1.0	nA
				•	•	•

ON CHARACTERISTICS

I _{DSS}	Zero-Gate Voltage Drain Current (Note 5)	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0$	111	20	-	mA
			112	5.0	-	
			113	2.0	-	
r _{DS} (on)	Drain-Source On Resistance	$V_{DS} \leq 0.1 \text{ V}, V_{GS} = 0$	111	-	30	Ω
			112	-	50	
			113	_	100	

SMALL SIGNAL CHARACTERISTICS

C _{dg} (on) C _{sg} (on)	Drain-Gate &Source-Gate On Capacitance	V_{DS} = 0, V_{GS} = 0, f = 1.0 MHz	-	28	pF
C _{dg} (off)	Drain-Gate Off Capacitance	V_{DS} = 0, V_{GS} = –10 V, f = 1.0 MHz	-	5.0	pF
C _{sg} (off)	Source-Gate Off Capacitance	V_{DS} = 0, V_{GS} = -10 V, f = 1.0 MHz	-	5.0	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse test: pulse width \leq 300 μ s, duty cycle \leq 2%.

J111, J112, J113, MMBFJ111, MMBFJ112, MMBFJ113

TYPICAL PERFORMANCE CHARACTERISTICS

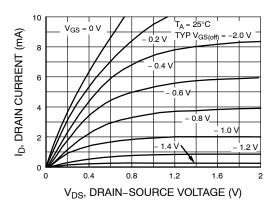


Figure 1. Common Drain–Source

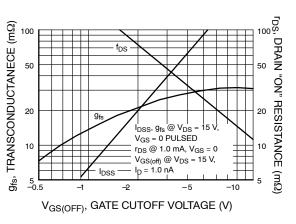


Figure 2. Parameter Interactions

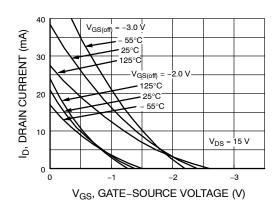


Figure 3. Transfer Characteristics

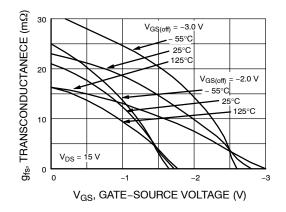


Figure 5. Transfer Characteristics

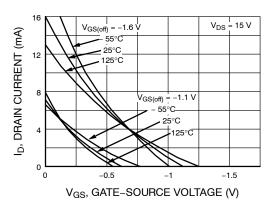


Figure 4. Transfer Characteristics

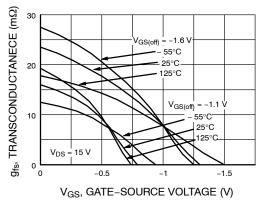


Figure 6. Transfer Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

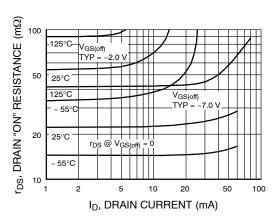


Figure 7. On Resistance vs. Drain Current

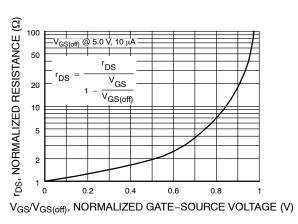


Figure 8. Normalized Drain Resistance vs. Bias Voltage

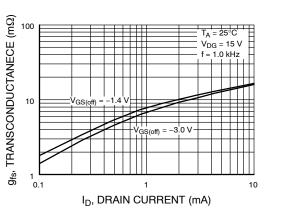


Figure 9. Transconductance vs. Drain Current

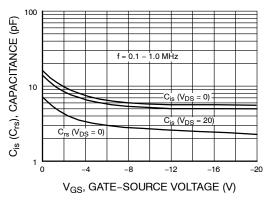


Figure 11. Capacitance vs. Voltage

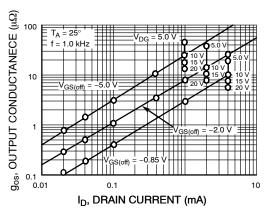


Figure 10. Output Conductance vs. Drain Current

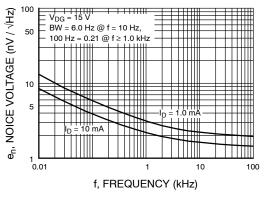


Figure 12. Noise Voltage vs. Frequency

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

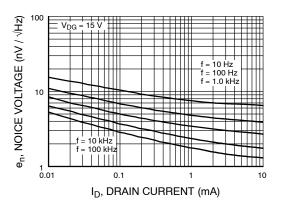


Figure 13. Noise Voltage vs. Current

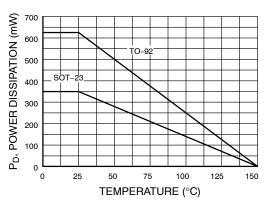


Figure 14. Power Dissipation vs. Ambient Temperature

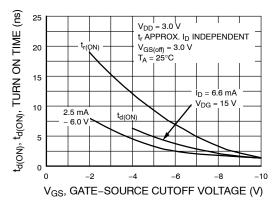


Figure 15. Switching Turn-On Time vs. Gate-Source Voltage

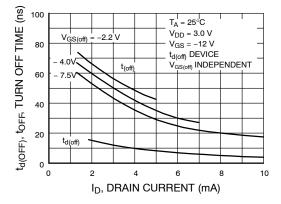
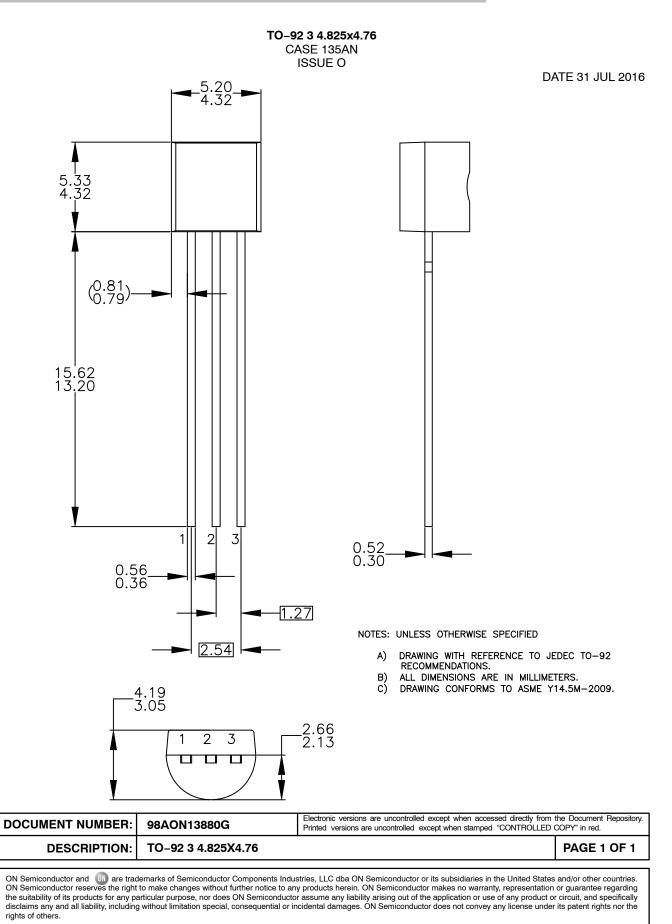
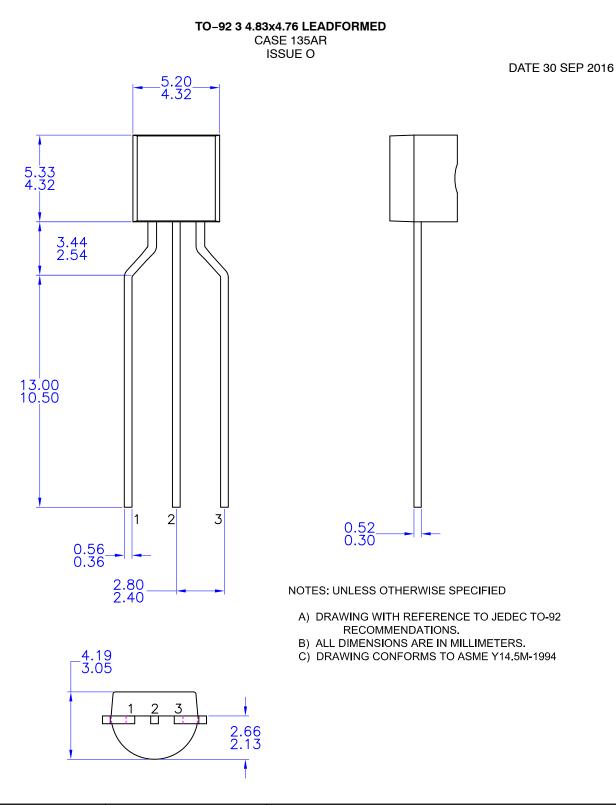


Figure 16. Switching Turn-Off Time vs. Drain Current

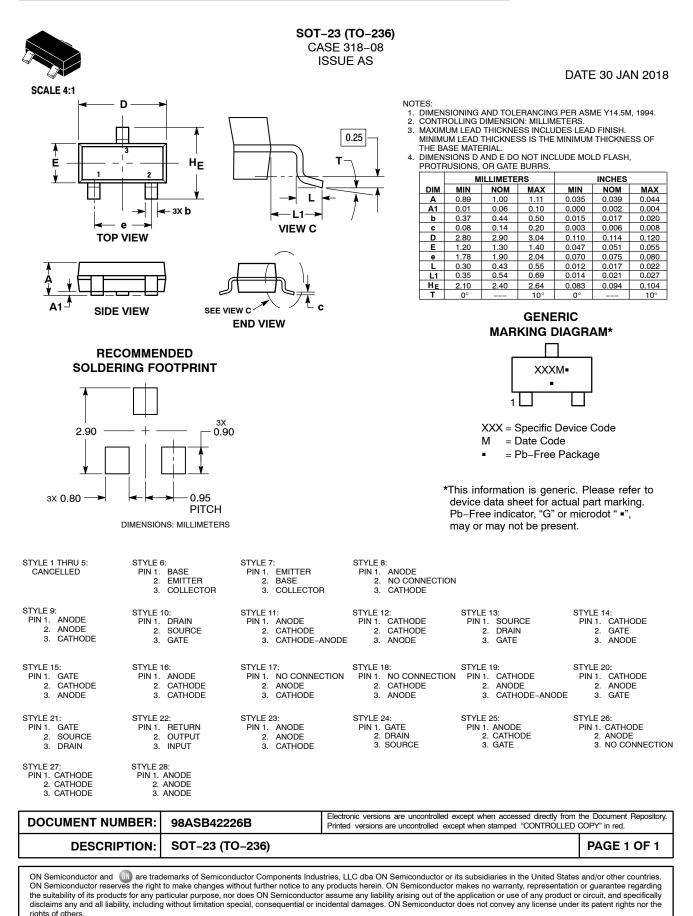

J111, J112, J113, MMBFJ111, MMBFJ112, MMBFJ113

ORDERING INFORMATION

Part Number	Top Mark	Package	Shipping [†]
J111	AJ 111 YWW	TO-92 3L (Pb-Free)	10000 Units / Bulk
J111-D26Z	AJ 111 YWW	TO-92 3L (Pb-Free)	2000 / Tape & Reel
J111-D74Z	AJ 111 YWW	TO-92 3L (Pb-Free)	2000 / Ammo
J112	AJ 112 YWW	TO-92 3L (Pb-Free)	10000 Units / Bulk
J112-D26Z	AJ 112 YWW	TO-92 3L (Pb-Free)	2000 / Tape & Reel
J112–D27Z	AJ 112 YWW	TO-92 3L (Pb-Free)	2000 / Tape & Reel
J112–D74Z	AJ 112 YWW	TO-92 3L (Pb-Free)	2000 / Ammo
J113	AJ 113 YWW	TO-92 3L (Pb-Free)	10000 Units / Bulk
J113-D74Z	AJ 113 YWW	TO-92 3L (Pb-Free)	2000 / Ammo
MMBFJ111	6P	SOT-23 3L (Pb-Free)	3000 / Tape & Reel
MMBFJ112	6R	SOT-23 3L (Pb-Free)	3000 / Tape & Reel
MMBFJ113	6S	SOT-23 3L (Pb-Free)	3000 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

© Semiconductor Components Industries, LLC, 2019



DOCUMENT NUMBER:	98AON13879G Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	TO-92 3 4.83X4.76 LEADFORMED		PAGE 1 OF 1			
ON Semiconductor and M are trademarks of Semiconductor Components Industries. LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.						

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

ONSEMÍ

SOT-23 CASE 318BM **ISSUE A** DATE 01 SEP 2021 NOTES: UNLESS OTHERWISE SPECIFIED А D A) REFERENCE JEDEC REGISTRATION 3 TO-236, VARIATION AB, ISSUE H. В B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS ARE INCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS. D) DIMENSIONING AND TOLERANCING PER E1 ASME Y14.5M - 2009. MILLIMETERS DIM SEE DETAIL A NOM. MIN. MAX. А 1.20 2 A1 0.00 0.05 0.10 (z) A2 0.93 REF b b 0.37 0 44 0.60 е ⊕ 0.20(M) A B 0.08 0.23 с 0.15 e1 D 2.72 2.92 3.12 F Е 2.10 2.40 2.70 E1 1.15 1.30 1.50 0.95 е 0.95 BSC (A2) A1 1.90 BSC e1 0.20 L --------0.10M C \square 1.40 L1 0.55 REF С z 0.29 REF GAGE PLANE 2.20 0.25 С 1 SEATING - 1.00 PLANE - (L1) -1.90 DETAIL A LAND PATTERN SCALE: 2X RECOMMENDATION *FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING GENERIC DETAILS, PLEASE DOWNLOAD THE ON **MARKING DIAGRAM*** SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D. XXXM-. *This information is generic. Please refer to device data sheet for actual part marking. XXX = Specific Device Code Pb-Free indicator, "G" or microdot "•", may Μ = Date Code or may not be present. Some products may = Pb-Free Package not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON13784G Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOT-23 PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for JFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

MCH3914-8-TL-H F5606 2SK2394-6-TB-E CPH5901G-TL-E MCH3914-7-TL-H MCH5908H-TL-E CPH5902G-TL-E CPH5905G-TL-E CPH5905G-TL-E 2SK2394-7-TB-E NSVJ2394SA3T1G 2N3819 PN4393 2N4393 U311 2N5397 2SK208-GR(TE85L,F) J176_D74Z IFN5566 2N2609 2N3823 2N3970 2N3971 2N3972 2N4091 2N4092 2N4093 2N4118 2N4118A 2N4220 2N4221 2N4221A 2N4338 2N4339 2N4341 2N4416 2N4416A 2N4856 2N4856 2N4858 2N4861 2N4861A 2N5020 2N5115 2N6550 IF1331 IF140 IFN146 IFN401 IFN411 IFN5434