ON Semiconductor

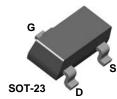
Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

ON Semiconductor®


J175 / J176 / MMBFJ175 / MMBFJ176 / MMBFJ177 P-Channel Switch

Description

This device is designed for low-level analog switching sample-and-hold circuits and chopper-stabilized amplifiers. Sourced from process 88.

Figure 1. J175 / J176 Device Package

Mark: 6W / 6X / 6Y Note: Source & drain are interchangeable.

Figure 2. MMBFJ175 / 176 / 177 Device Package

Ordering Information

Part Number	Marking	Package	Packing Method
J175-D26Z	J175	TO-92 3L	Tape and Reel
J176-D74Z	J176	TO-92 3L	Ammo
MMBFJ175	6W	SOT-23 3L	Tape and Reel
MMBFJ176	6X	SOT-23 3L	Tape and Reel
MMBFJ177	6Y	SOT-23 3L	Tape and Reel

Absolute Maximum Ratings^{(1),(2)}

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{DG}	Drain-Gate Voltage	-30	V
V _{GS}	Gate-Source Voltage	30	V
I _{GF}	Forward Gate Current	50	mA
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to + 150	°C

Notes:

- 1. These ratings are based on a maximum junction temperature of 150°C.
- 2. These are steady-state limits. ON Semiconductor should be consulted on applications involving pulsed or lowduty cycle operations.

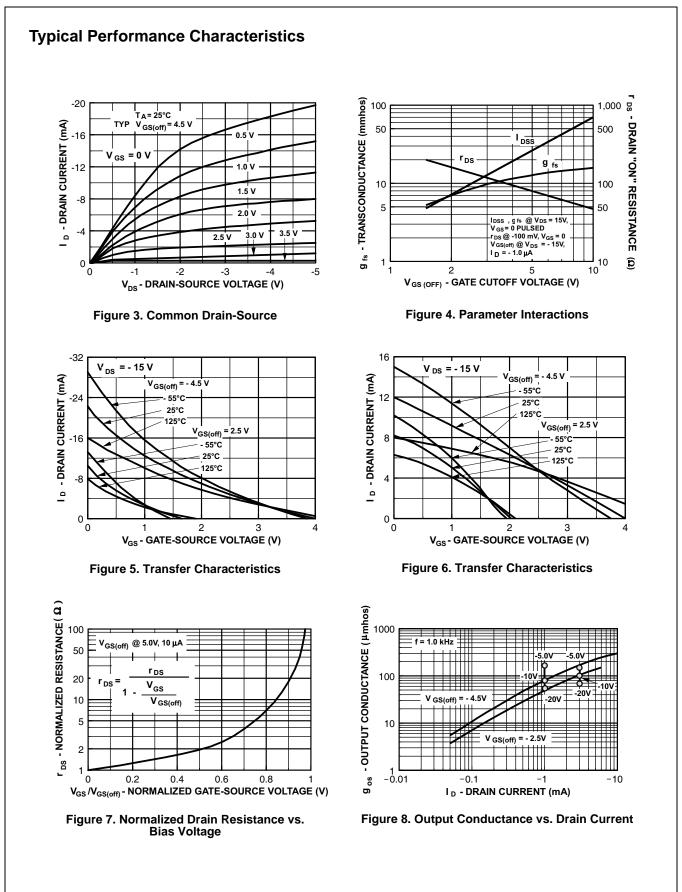
Thermal Characteristics

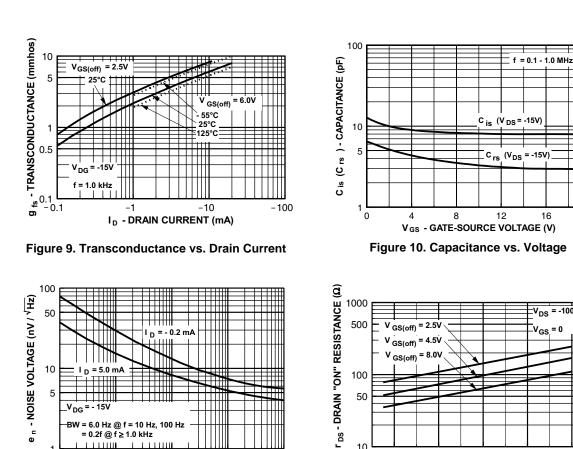
Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

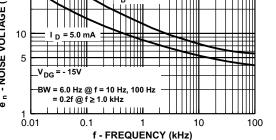
		Ma			
Symbol	Parameter	J175 / J176 ⁽³⁾	MMBFJ175 / MMBFJ176 / MMBFJ177 ⁽³⁾	Unit	
PD	Total Device Dissipation	350	225	mW	
	Derate Above 25°C	2.8	1.8	mW/°C	
R _{θJC}	Thermal Resistance, Junction to Case125			°C/W	
R _{θJA}	Thermal Resistance, Junction to Ambient	357	556	°C/W	

Note:

3. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.

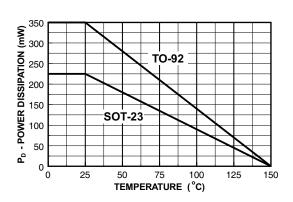

Electrical Characteristics


Values are at T_A = 25°C unless otherwise noted.


Symbol	Parameter	Conditions		Min.	Max.	Unit
Off Charact	eristics					
V _{(BR)GSS}	Gate-Source Breakdown Voltage	I_{G} = 1.0 μ A, V_{DS} = 0		30		V
I _{GSS}	Gate Reverse Current	V _{GS} = 20 V, V _{DS} = 0			1.0	nA
V _{GS(off)}	Gate-Source Cut-Off Voltage	V _{DS} = -15 V, I _D = -10 nA	J175 / MMBFJ175	3.0	6.0	V
			J176 / MMBFJ176	1.0	4.0	
			MMBFJ177	0.8	2.5	
On Charact	eristics					
I _{DSS}	Zero-Gate Voltage Drain Current ⁽⁴⁾	V _{DS} = -15 V, I _{GS} = 0	J175 / MMBFJ175	-7.0	-60.0	mA
			J176 / MMBFJ176	-2.0	-25.0	
			MMBFJ177	-1.5	-20.0	
۲ _{DS(on)}	Drain-Source On Resistance	$V_{DS} \le 0.1 \text{ V}, V_{GS} = 0$	J175 / MMBFJ175		125	Ω
			J176 / MMBFJ176		250	
			MMBFJ177		300	

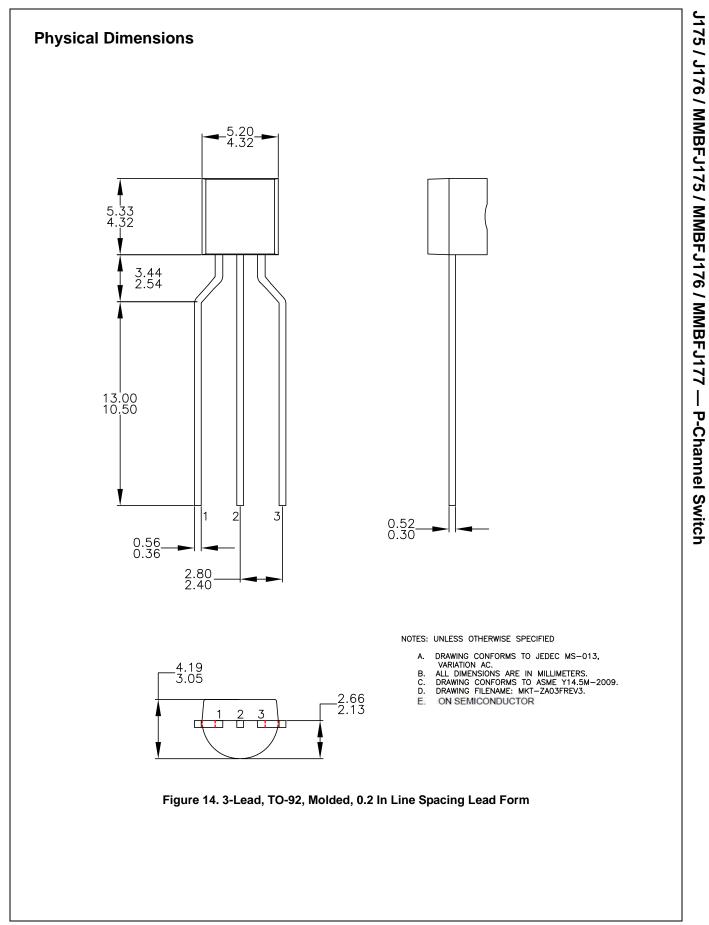
Note:

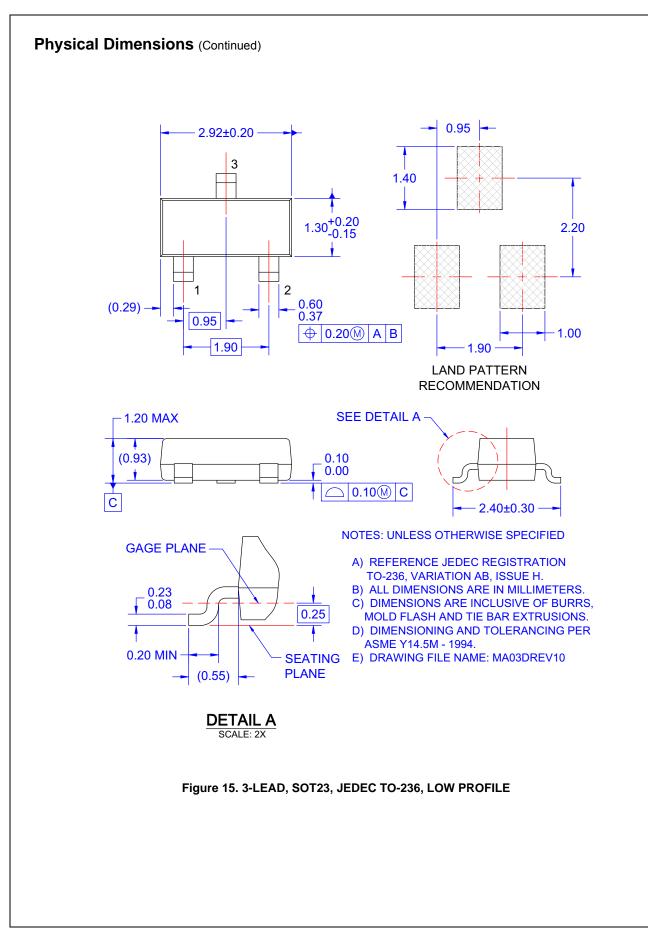
4. Pulse test: pulse width $\leq 300~\mu s,$ duty cycle $\leq 2.0\%.$



Typical Performance Characteristics (Continued)

Figure 11. Noise Voltage vs. Frequency


16


V_{DS} = -100 mV

20

V_{GS} = 0 100 50 10 -50 0 50 100 150 T_A - AMBIENT TEMPERATURE (°C)

Figure 12. Channel Resistance vs. Temperature

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for JFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

MCH3914-8-TL-H F5606 2SK2394-6-TB-E CPH5901G-TL-E MCH3914-7-TL-H MCH5908H-TL-E CPH5902G-TL-E CPH5905G-TL-E CPH5905G-TL-E 2SK2394-7-TB-E NSVJ2394SA3T1G 2N3819 PN4393 MMBF5103 MMBFJ202 2N4393 U311 2N5397 2SK208-GR(TE85L,F) J176_D74Z 2N2609 2N3821 2N3823 2N3954 2N3970 2N3971 2N3972 2N4091 2N4092 2N4093 2N4118 2N4118A 2N4220 2N4221A 2N4338 2N4339 2N4341 2N4416 2N4416A 2N4856 2N4856 2N4858 2N4861 2N4861A 2N5020 2N5115 2N6550 IF1331 IF140 IFN146 IFN152