ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

3056 (H) x 3056 (V) Full Frame CCD Image Sensor

Description

Combining high resolution with outstanding sensitivity, the KAF-09000 image sensor has been specifically designed to meet the needs of next-generation low cost digital radiography and scientific imaging systems. The high sensitivity available from 12-micron square pixels combines with a low noise architecture to allow system designers to improve overall image quality, or to relax system tolerances to achieve lower cost. The excellent uniformity of the KAF-09000 image sensor improves overall image integrity by simplifying image corrections, while integrated anti-blooming protection prevents image bleed from over-exposure in bright areas of the image. To simplify device integration, the KAF-09000 image sensor uses the same pin-out and package as the KAF-16801 image sensor.

The sensor utilizes the TRUESENSE Transparent Gate Electrode to improve sensitivity compared to the use of a standard front-side illuminated polysilicon electrode.

Table 1. GENERAL SPECIFICATIONS

Parameter	Typical Value
Architecture	Full Frame CCD [Square Pixels]
Total Number of Pixels	3103 (H) x 3086 (V) = 9.6 Mp
Number of Effective Pixels	3085 (H) x 3085 (V) = 9.5 Mp
Number of Active Pixels	3056 (H) x 3056 (V) = 9.3 Mp
Pixel Size	12 μm (H) x 12 μm (V)
Active Image Size	36.7 mm (H) x 36.7 mm (V) 51.9 mm diagonal, 645 1.3x optical format
Aspect Ratio	Square
Horizontal Outputs	1
Saturation Signal	110 ke ⁻
Output Sensitivity	24 μV/e ⁻
Quantum Efficiency (550 nm)	64%
Responsivity (550 nm)	2595 ke/μJ/cm ² 62.3 V/μJ/cm ²
Read Noise (f = 3 MHz)	7 e ⁻
Dark Signal (T = 25°C)	5 e/pix/sec
Dark Current Doubling Temperature	7°C
Linear Dynamic Range (f = 4 MHz)	84 dB
Blooming Protection (4 ms exposure time)	> 100 X saturation exposure
Maximum Data Rate	10 MHz
Package	CERDIP, (sidebrazed pins, CuW)
Cover Glass	AR coated 2 sides Taped Clear

NOTE: Parameters above are specified at T = 25°C unless otherwise noted.

ON Semiconductor®

www.onsemi.com

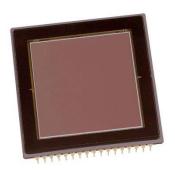


Figure 1. KAF-09000 CCD Image Sensor

Features

- TRUESENSE Transparent Gate Electrode for High Sensitivity
- Large Pixel Size
- Large Image Area
- High Quantum Efficiency
- Low Noise Architecture
- Broad Dynamic Range

Applications

- Medical
- Scientific

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION

Table 2. ORDERING INFORMATION

Part Number	Description	Marking Code
KAF-09000-ABA-DP-BA	Monochrome, Microlens, CERDIP Package, (sidebrazed, CuW), Taped clear coverglass, Standard grade	KAF-09000-ABA [Serial Number]
KAF-09000-ABA-DP-AE	Monochrome, Microlens, CERDIP Package, (sidebrazed, CuW), Taped clear coverglass, Engineering sample	
KAF-09000-ABA-DD-BA	Monochrome, Microlens, CERDIP Package, (sidebrazed, CuW), AR coated 2 sides, Standard grade	
KAF-09000-ABA-DD-AE	Monochrome, Microlens, CERDIP Package, (sidebrazed, CuW), AR coated 2 sides, Engineering sample	

See the ON Semiconductor *Device Nomenclature* document (TND310/D) for a full description of the naming convention used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at www.onsemi.com.

DEVICE DESCRIPTION

Architecture

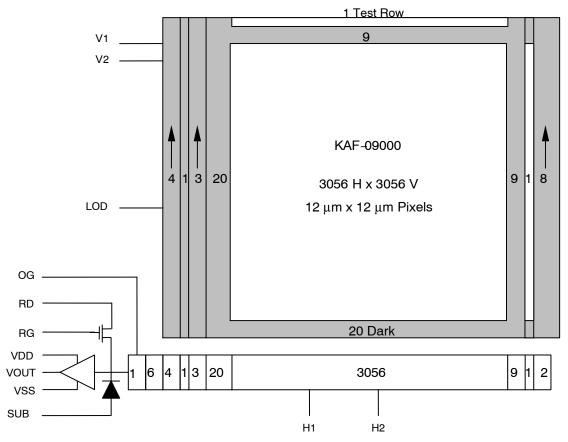


Figure 2. Block Diagram

Dark Reference Pixels

The periphery of the device is surrounded with a border of light shielded pixels creating a dark region. Within this dark region, there are 20 leading dark pixels on every line as well as 20 full dark lines at the start and 9 full dark lines at the end of every frame. Under normal circumstances, these pixels do not respond to light and may be used as a dark reference.

Dummy Pixels

Within each horizontal shift register there are 14 leading pixels and 3 trailing pixels. These are designated as dummy pixels and should not be used to determine a dark reference level.

Image Acquisition

An electronic representation of an image is formed when incident photons falling on the sensor plane create electron-hole pairs within the device. These photon-induced electrons are collected locally by the

formation of potential wells at each pixel site. The number of electrons collected is linearly dependent on light level and exposure time and non-linearly dependent on wavelength. When the pixel's capacity is reached, excess electrons are discharged into the lateral overflow drain to prevent crosstalk or 'blooming'. During the integration period, the V1 and V2 register clocks are held at a constant (low) level.

Charge Transport

The integrated charge from each pixel is transported to the output using a two-step process. Each line (row) of charge is first transported from the vertical CCDs to a horizontal CCD register using the V1 and V2 register clocks. The horizontal CCD is presented a new line on the falling edge of V2 while H1 is held high. The horizontal CCDs then transport each line, pixel by pixel, to the output structure by alternately clocking the H1 and H2 pins in a complementary fashion.

HORIZONTAL REGISTER

Output Structure

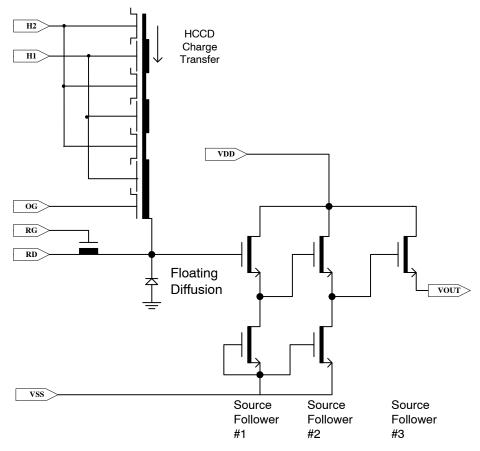
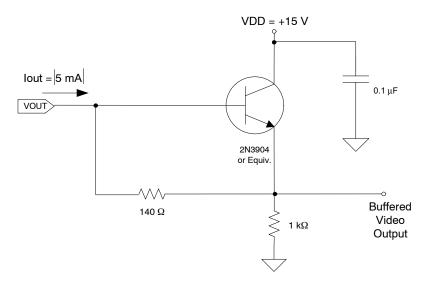
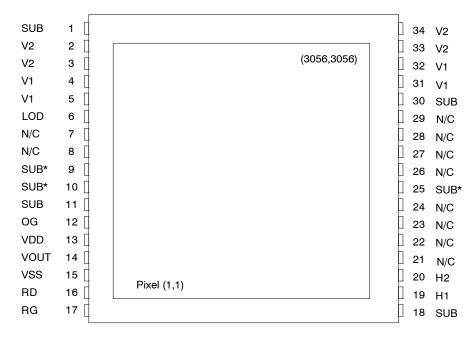



Figure 3. Output Architecture (Left or Right)

The output consists of a floating diffusion capacitance connected to a three-stage source follower. Charge presented to the floating diffusion (FD) is converted into a voltage and is current amplified in order to drive off-chip loads. The resulting voltage change seen at the output is linearly related to the amount of charge placed on the FD. Once the signal has been sampled by the system electronics,

the reset gate (RG) is clocked to remove the signal and FD is reset to the potential applied by reset drain (RD). Increased signal at the floating diffusion reduces the voltage seen at the output pin. To activate the output structure, an off-chip current source must be added to the VOUT pin of the device. See Figure 4.

Output Load



Note: Component values may be revised based on operating conditions and other design considerations.

Figure 4. Recommended Output Structure Load Diagram

PHYSICAL DESCRIPTION

Pin Description and Device Orientation

Notes: 1. Pins with the same name are to be tied together on the circuit board and have the same timing.

2. Unlike the KAF-16801, pins 9, 10, and, 25 are internally connected to SUB. They may be connected to SUB on the printed circuit board or may be left floating.

Figure 5. Pinout Diagram

Table 3. PIN DESCRIPTION

Pin	Name	Description
1	SUB	Substrate
2	V2	Vertical CCD Clock - Phase 2
3	V2	Vertical CCD Clock - Phase 2
4	V1	Vertical CCD Clock - Phase 1
5	V1	Vertical CCD Clock - Phase 1
6	LOD	Anti Blooming Drain
7	N/C	No Connection
8	N/C	No Connection
9	SUB*	No Connection
10	SUB*	No Connection
11	SUB	Substrate
12	OG	Output Gate
13	VDD	Output Amplifier Supply
14	VOUT	Video Output
15	VSS	Output Amplifier Return
16	RD	Reset Drain
17	RG	Reset Gate

18	SUB	Substrate			
19	H1	Horizontal Phase 1			
20	H2	Horizontal Phase 2			
21	N/C	No Connection			
22	N/C	No Connection			
23	N/C	No Connection			
24	N/C	No Connection			
25	SUB*	No Connection			
26	N/C	No Connection			
27	N/C	No Connection			
28	N/C	No Connection			
29	N/C	No Connection			
30	SUB	Substrate			
31	V1	Vertical CCD Clock - Phase 1			
32	V1	Vertical CCD Clock - Phase 1			
33	V2	Vertical CCD Clock - Phase 2			
34	V2	Vertical CCD Clock - Phase 2			

^{*}Unlike the KAF-16801, pins 9, 10, and, 25 are internally connected to SUB. They may be connected to SUB on the printed circuit board or must be left floating.

IMAGING PERFORMANCE

Table 4. TYPICAL OPERATIONAL CONDITIONS

Description	Condition - Unless otherwise noted	Notes
Read out time treadout	2533 ms	Includes over clock pixels
Integration time (tint)	variable	
Horizontal clock frequency	4 MHz	
Temperature	25°C	Room temperature
Mode	integrate – readout cycle	
Operation	Nominal operating voltages and timing with min. vertical pulse width tVw = 20 μs	

Table 5. SPECIFICATIONS

Description	Symbol	Min.	Nom.	Max.	Units	Notes	Verification Plan
Saturation Signal	Ne ⁻ sat	95k	110k		e-		die ¹¹
Quantum Efficiency (550 nm)	QE		64		%	1	design ¹²
Photo Response Non-Linearity	PRNL		1		%	2	design ¹²
Photo Response Non-Uniformity	PRNU		0.5	2.5	%	3	die ¹¹
Integration Dark Signal	Vdark, int		5	20	e/pix/sec	4	die ¹¹
			0.6	2.8	pA/cm ²		
Read out Dark Signal	Vdark, read		80	320	electrons	5	die ¹¹
Dark Signal Non-Uniformity	DSNU			20	e/pix/sec	6	die ¹¹
Dark Signal Doubling Temperature	ΔΤ		7		°C		design ¹²
Read Noise	NR		7	14	e- rms	7	design ¹²
Linear Dynamic Range	DR		84		dB	8	design ¹²
Blooming Protection	Xab	100			x Vsat	9	design ¹²
Output Amplifier Sensitivity	Vout/Ne-		24		μV/e		design ¹²
DC Offset, output amplifier	Vodc	Vrd-4	Vrd-2.0		V	10	die ¹¹
Output Amplifier Bandwidth	f_3dB		88		MHz		design ¹²
Output Impedance, Amplifier	ROUT		150	250	Ω		die ¹¹

- 1. Increasing output load currents to improve bandwidth will decrease these values.
- 2. Worst case deviation from straight line fit, between 1% and 90% of Vsat.
- 3. One Sigma deviation of a 128 x 128 sample when CCD illuminated uniformly.
- 4. Average of all pixels with no illumination at 25°C.
- Read out dark current depends on the read out time, primarily when the vertical CCD clocks are at their high levels. This is approximately 0.125 sec/image for nominal timing conditions, tVw = 20 μs. The read out dark current will increase as tVw is increased. The readout dark current is also dependent on the operating temperature. The specification applies to 25°C.
- 6. Average integration dark signal of any of 32 x 32 blocks within the sensor. (each block is 128 x 128 pixels)
- 7. Output amplifier noise only. Operating at pixel frequency up to 4 MHz, bandwidth <20 MHz, tint = 0, and no dark current shot noise.
- 8. 20log (Vsat/VN)
- 9. Xab is the number of times above the Vsat illumination level that the sensor will bloom by spot size doubling. The spot size is 10% of the imager height. Xab is measured at 4 ms.
- 10. Video level offset with respect to ground.
- 11. A parameter that is measured on every sensor during production testing.
- 12. A parameter that is quantified during the design verification activity.

TYPICAL PERFORMANCE CURVES (QE)

KAF-09000 Spectral Response

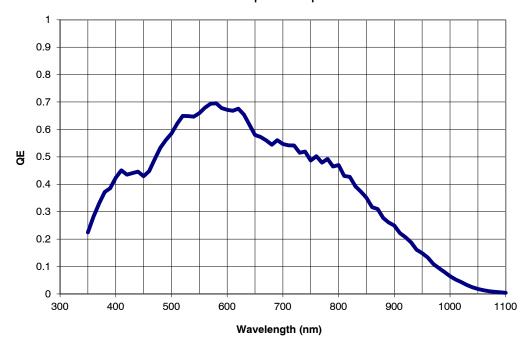


Figure 6. Typical Spectral Response

KAF-09000 Angle Response

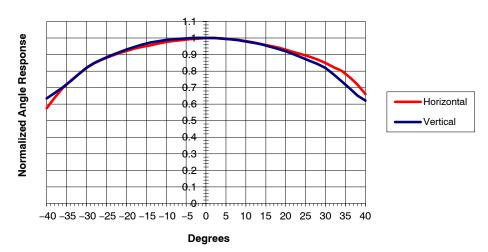


Figure 7. Typical Angle Response

KAF-09000 Dark Current

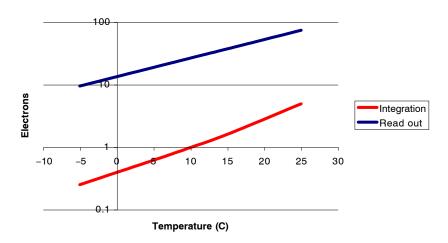


Figure 8. Dark Current

KAF-09000 Noise Floor

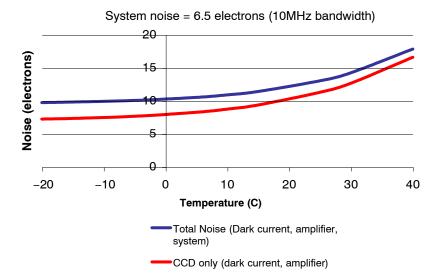


Figure 9. Noise Floor

KAF-09000 Linearity

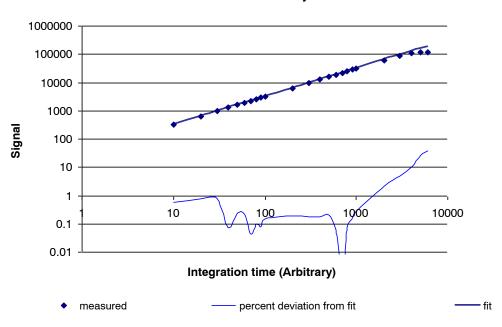


Figure 10. Linearity

DEFECT DEFINITIONS

Operating Conditions

All cosmetic tests performed at approximately 25°C.

Table 6. SPECIFICATIONS

Classification	Points	Clusters	Columns	Includes Dead Columns
Standard Grade	< 200	< 20	< 10	yes

Point Defects

Dark: A pixel, which deviates by more than 6% from neighboring pixels when illuminated to 70% of saturation –or–

Bright: A Pixel with dark current > 3,000 e/pixel/sec at 25°C

Cluster Defect

A grouping of not more than 10 adjacent point defects Cluster defects are separated by no less than 4 good pixels in any direction

Column Defect

A grouping of more than 10 point defects along a single column

-or-

A column containing a pixel with dark current > 15,000 e/pixel/sec (bright column)

-or-

A column that does not meet the CTE specification for all exposures less than the specified Max sat. signal level and greater than $2~\rm ke^-$

A pixel, which loses more than 250 e⁻ under 2 ke⁻ illumination (trap defect)

Column defects are separated by no less than 4 good columns. No multiple column defects (double or more) will be permitted.

Column and cluster defects are separated by at least 4 good columns in the x direction.

OPERATION

Table 7. ABSOLUTE MAXIMUM RATINGS

Description	Symbol	Minimum	Maximum	Units	Notes
Diode Pin Voltages	V _{diode}	-0.5	+20	V	1, 2
Adjacent Gate Pin Voltages	V _{gate1}	-18	+18	V	1, 3
Isolated Gate Pin Voltages	V ₁₋₂	-0.5	+20	V	4
Output Bias Current	l _{out}		-30	mA	5
LOD Diode Voltage	V_{LOD}	-0.5	-13.0	V	6
Operating Temperature	T _{OP}	-60	60	°C	7

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Referenced to pin SUB
- 2. Includes pins: RD, VDD, VSS, VOUT.
- 3. Includes pins: V1, V2, H1, H2, VOG.
- 4. Includes pins: RG.
- 5. Avoid shorting output pins to ground or any low impedance source during operation. Amplifier bandwidth increases at higher currents and lower load capacitance at the expense of reduced gain (sensitivity). Operation at these values will reduce MTTF.
- 6. V1, H1, V2, H2, H1L, VOG, and RD are tied to 0 V.
- 7. Noise performance will degrade at higher temperatures due to the temperature dependence of the dark current.
- 8. Absolute maximum rating is defined as a level or condition that should not be exceeded at any time. If the level or condition is exceeded, the device will be degraded and may be damaged.

Power-up Sequence

The sequence chosen to perform an initial power-up is not critical for device reliability. A coordinated sequence may minimize noise and the following sequence is recommended:

- 1. Connect the ground pins (SUB).
- 2. Supply the appropriate biases and clocks to the remaining pins.

Table 8. DC BIAS OPERATING CONDITIONS

Description	Symbol	Minimum	Nominal	Maximum	Units	Maximum DC Current (mA)	Notes
Reset Drain	V _{RD}	12.8	13	13.2	V	I _{RD} = 0.01	
Output Amplifier Supply	V_{SS}	1.8	2.0	2.2	V	I _{SS} = 3.0	
Output Amplifier Return	V_{DD}	14.8	15.0	17.0	V	I _{OUT} + I _{SS}	
Substrate	V _{SUB}		0		V	0.01	
Output Gate	V _{OG}	0	1	2	V	0.01	
Lateral Overflow Drain	V_{LOD}	7.8	8.0	9.0	V	0.01	
Video Output Current	I _{OUT}	-3	-5	-7	mA		1

^{1.} An output load sink must be applied to VOUT to activate output amplifier – see Figure 4.

AC Operating Conditions

Table 9. CLOCK LEVELS

Description	Symbol	Level	Minimum	Nominal	Maximum	Units	Notes
V1 Low Level	V1L	Low	-9.5	-9.0	-8.5	V	1
V1 High Level	V1H	High	2.3	2.5	2.7	V	1
V2 Low Level	V2L	Low	-9.5	-9.0	-8.5	V	1
V2 High Level	V2H	High	2.3	2.5	2.7	V	1
H1 Low Level	H1L	Low	-2.5	-2	-1.7	V	1
H1 High Level	H1H	High	7.5	8	8.2	V	1

^{1.} All pins draw less than 10 μA DC current. Capacitance values relative to SUB (substrate).

Table 9. CLOCK LEVELS

Description	Symbol	Level	Minimum	Nominal	Maximum	Units	Notes
H2 Low Level	H2L	Low	-2.5	-2	-1.7	V	1
H2 High Level	H2H	High	7.5	8	8.2	V	1
RG Low Level	RGL	Low	5.3	5.5	5.7	V	1
RG High Level	RGH	High	11.2	11	10.8	V	1

^{1.} All pins draw less than 10 μA DC current. Capacitance values relative to SUB (substrate).

Capacitance Equivalent Circuit

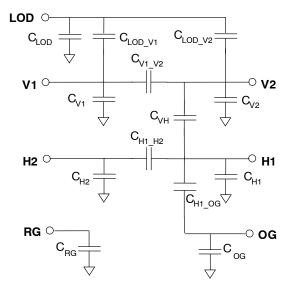


Figure 11. Equivalent Circuit Model

Table 10.

Description	Label	Value	Unit
LOD-Sub Capacitance	C _{LOD}	6.5	nF
LOD-V1 Capacitance	C _{LOD_V1}	36	nF
LOD-V2 Capacitance	C _{LOD_V2}	36	nF
V1-V2 Capacitance	C _{V1_V2}	80	nF
V1-Sub Capacitance	C _{V1_SUB}	250	nF
V2-Sub Capacitance	C _{V2_SUB}	250	nF
V2-H1 Capacitance	C _{VH}	36	pF
H1-H2 Capacitance	C _{H1_H2}	75	pF
H1-Sub Capacitance	C _{H1_Sub}	500	pF
H2-Sub Capacitance	C _{H2_Sub}	300	pF
OG-Sub Capacitance	C _{OG_Sub}	5	pF
RG-Sub Capacitance	C _{RG_Sub}	13	pF

TIMING

Table 11. REQUIREMENTS AND CHARACTERISTICS

Description	Symbol	Minimum	Nominal	Maximum	Units	Notes
H1, H2 Clock Frequency	f _H		4	10	MHz	1
H1, H2 Rise, Fall Times	t _{H1r} , t _{H1f}	5			%	3
V1, V2 Rise, Fall Times	t _{V1r} , t _{V1f}	5			%	3
V1 - V2 Cross-over	V _{VCR}	-1	0	1	V	
H1 - H2 Cross-over	V _{HCR}	2	3	5	V	
H1, H2 Setup Time	t _{HS}	5	10		μs	
RG Clock Pulse Width	t _{RGw}	5	10		ns	4
V1, V2 Clock Pulse Width	t_{Vw}	20	20		μs	
Pixel Period (1 Count)	t _e		250		ns	2
Readout Time	t _{readout}		2,533		ms	7
Integration Time	t _{int}					5
Line Time	t _{line}		0.821		ms	6

- 50% duty cycle values.
 CTE will degrade above the maximum frequency.
 Relative to the pulse width (based on 50% of high/low levels).
 RG should be clocked continuously.
 Integration time is user specified.
 (3103 * t_e) + t_{HS} + (2 * t_{Vw}) = 0.821 msec
 t_{readout} = t_{line} * 3086 lines

Edge Alignment

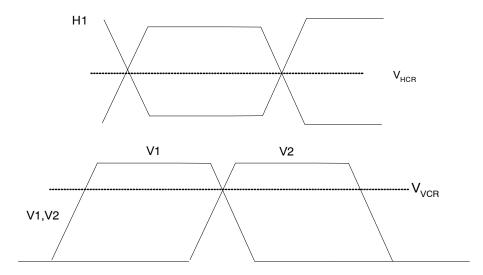


Figure 12. Timing Edge Alignment

Frame Timing

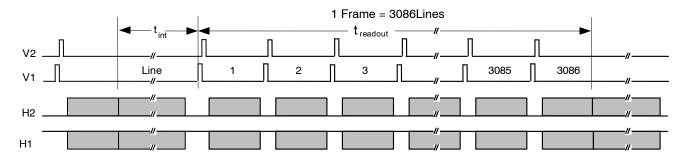


Figure 13. Frame Timing

Frame Timing Detail

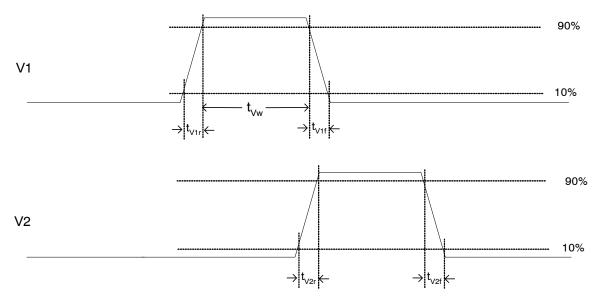


Figure 14. Frame Timing Detail

Line Timing

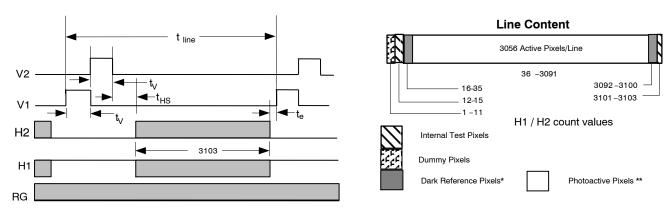


Figure 15. Line Timing

Pixel Timing

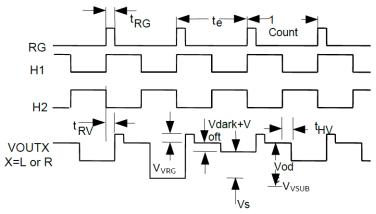


Figure 16. Pixel Timing

Pixel Timing Detail

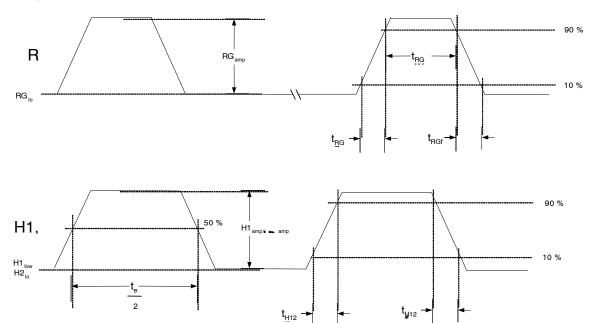


Figure 17. Pixel Timing Detail

Example Waveforms

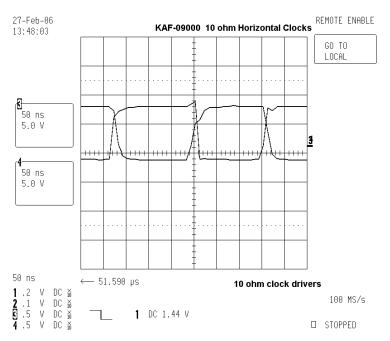


Figure 18. Horizontal Clocks

Figure 19. Video Waveform

NOTE: The upper waveform was taken at the CCD output and the lower waveform was taken at the analog to digital converter, and is bandwidth limited.

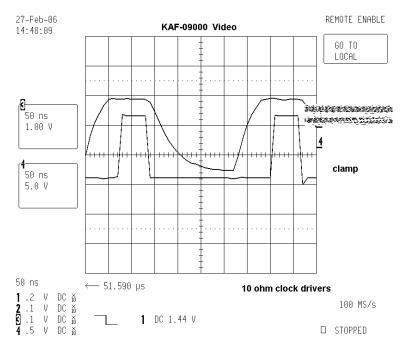


Figure 20. Video Waveform and Clamp Clock

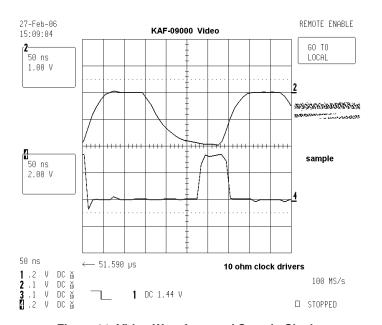


Figure 21. Video Waveform and Sample Clock

STORAGE AND HANDLING

Table 12. STORAGE CONDITIONS

Description	Symbol	Minimum	Maximum	Units	Notes
Storage Temperature	T _{ST}	-20	70	°C	1

^{1.} Long term storage toward the maximum temperature will accelerate color filter degradation.

For information on ESD and cover glass care and cleanliness, please download the *Image Sensor Handling and Best Practices* Application Note (AN52561/D) from www.onsemi.com.

For information on soldering recommendations, please download the Soldering and Mounting Techniques Reference Manual (SOLDERRM/D) from www.onsemi.com.

For quality and reliability information, please download the *Quality & Reliability* Handbook (HBD851/D) from www.onsemi.com.

For information on device numbering and ordering codes, please download the *Device Nomenclature* technical note (TND310/D) from www.onsemi.com.

For information on Standard terms and Conditions of Sale, please download <u>Terms and Conditions</u> from <u>www.onsemi.com</u>.

MECHANICAL INFORMATION

Completed Assembly

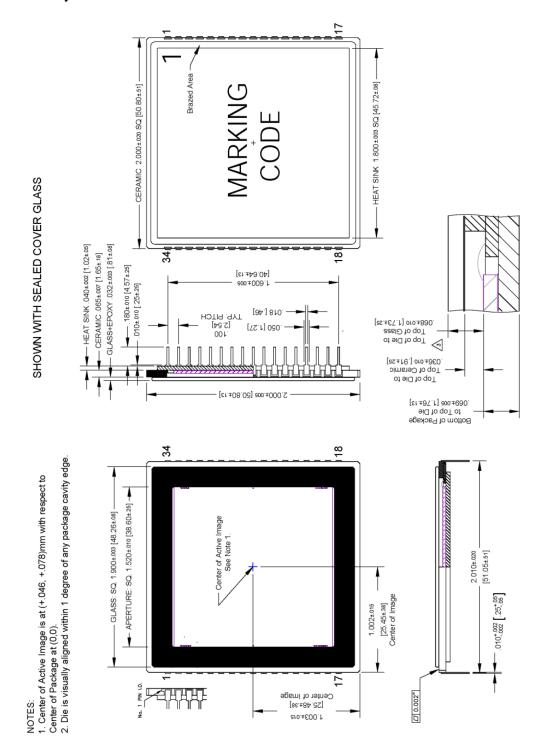


Figure 22. Completed Assembly (1 of 1)

Cover Glass Specification

MAR Glass for Sealed Cover

- 1. Scratch and dig: 10 micron max
- 2. Substrate material Schott D263T eco or equivalent
- 3. Multilayer anti-reflective coating

Table 13.

Wavelength	Total Reflectance
420 – 450	2%
450 – 630	1%
630 – 680	2%

ON Semiconductor and the interpretability are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negl

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Image Sensors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

KAF-16803-ABA-DD-BA KAF-4320-AAA-JP-B1 KAF-16200-ABA-CD-B2 KAF-50100-AAA-JD-BA KAI-0340-FBA-CB-AA-SINGLE KAI-11002-ABA-CD-B1 KAI-2020-ABA-CD-BA KAI-2093-ABA-CB-B2 KAI-2020-ABA-CP-BA KAI-01150-FBA-FD-BA KAF-8300-AXC-CD-AA KAI-11002-ABA-CD-B2 KAF-3200-ABA-CD-B2 AR0331SRSC00SUCA0-DPBR EKL3104 MT9V138C12STC-DP1 KAI-08051-AXA-JP-BA KLI-8023-RAA-ED-AA KAF-0402-ABA-CP-B2 KLI-8023-AAA-ED-AA KAF-16200-FXA-CD-B2 KAI-04050-AAA-JP-BA NOM02A4-AG01G NOM02A4-AR03G KAF-1603-AAA-CP-B2 KAF-1001-AAA-CP-B1 NOIV1SE2000A-QDC KAI-1003-AAA-CR-B2 KAI-0340-FBA-CB-AA-DUAL KAF-0402-ABA-CD-B1 KAI-01050-FBA-JD-BA AR0237IRSH12SHRA0-DR NOIV1SE5000A-QDC OV02659-A47A AR0132AT6M00XPEA0-DRBR DR2X2K7_INVAR_RGB_V6 DR2X4K7_INVAR_RGB_V6 NOIP1SE1300A-QDI AR0132AT6C00XPEA0-DRBR1 AR0140AT3C00XUEA0-DPBR2 AR0144CSSC00SUKA0-CPBR1 AR0144CSSC00SUKA0-CPBR2 AR0230CSSC00SUEA0-DPBR2 AR0238CSSC12SHRA0-DP2 AR0330CM1C00SHAA0-DP1 AR0522SRSC09SURA0-DP1