NPN Epitaxial Silicon Transistor

KSC1008

Features

- Low-Frequency Amplifier Medium Speed Switching
- High Collector-Base Voltage: $\mathrm{V}_{\mathrm{CBO}}=80 \mathrm{~V}$
- Collector Current: $\mathrm{I}_{\mathrm{C}}=700 \mathrm{~mA}$
- Suffix "-C" means Center Collector (1. Emitter 2. Collector 3. Base)
- Non Suffix "-C" means Side Collector (1. Emitter 2. Base 3. Collector)
- Complement to KSA708
- These are Pb -Free Devices

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CBO }}$	Collector-Base Voltage	80	V
$\mathrm{~V}_{\text {CEO }}$	Collector-Emitter Voltage	60	V
$\mathrm{~V}_{\text {EBO }}$	Emitter-Base Voltage	8	V
I_{C}	Collector Current	700	mA
$\mathrm{~T}_{J}$	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.) (Note 1)

Symbol	Parameter	Value	Unit
P_{D}	Power Dissipation	800	mW
	Derate Above $25^{\circ} \mathrm{C}$	6.4	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {日JA }}$	Thermal Resistance, Junction-to-Ambient	156	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1. PCB size: FR-4, $76 \mathrm{~mm} \times 114 \mathrm{~mm} \times 1.57 \mathrm{~mm}$ (3.0 inch $\times 4.5$ inch $\times 0.062$ inch $)$ with minimum land pattern size.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

TO-92-3 CASE 135AN

TO-92-3 LF CASE 135AR
$\begin{array}{ll}\text { KSC1008: } & \text { 1. Emitter 2. Base 3. Collector } \\ \text { KSC1008C: } & \text { 1. Emitter 2. Collector 3. Base }\end{array}$

MARKING DIAGRAM

A = Assembly Code
C1008 = Device Code
$X \quad=0 / Y / Y C / G$
YWW = Date Code

ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{BV}_{\mathrm{CBO}}$	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	80	-	-	V
$\mathrm{BV}_{\mathrm{CEO}}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	60	-	-	V
$\mathrm{BV}_{\mathrm{EBO}}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	8	-	-	V
$\mathrm{I}_{\mathrm{CBO}}$	Collector Cut-Off Current	$\mathrm{V}_{\mathrm{CB}}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-	-	0.1	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{EBO}}$	Emitter Cut-Off Current	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$	-	-	0.1	$\mu \mathrm{~A}$
$\mathrm{~h}_{\mathrm{FE}}$	DC Current Gain	$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$	40	-	400	
$\mathrm{~V}_{\mathrm{CE}(\text { sat })}$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$	-	0.2	0.4	V
$\mathrm{~V}_{\mathrm{BE}(\text { sat })}$	Base-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$	-	0.86	1.10	V
f_{T}	Current Gain Bandwidth Product	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$	30	50	-	MHz
C_{ob}	Output Capacitance	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{mHz}$	-	8	-	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
$h_{\text {FE }}$ Classification

Classification	\mathbf{O}	\mathbf{Y}	\mathbf{G}
hFE	$70 \sim 140$	$120 \sim 240$	$200 \sim 400$

ORDERING INFORMATION (Note 2)

Part Number	Top Mark	Package	Shipping
KSC1008OBU	C1008 O-	$\begin{aligned} & \hline \text { TO-92-3 } \\ & \text { (Pb-Free) } \end{aligned}$	10000 / Bulk Bag
KSC1008YBU	C1008 Y-		10000 / Bulk Bag
KSC1008YTA	C1008 Y-	$\begin{aligned} & \hline \text { TO-92-3 LR } \\ & \text { (Pb-Free) } \end{aligned}$	2000 / Fan-Fold
KSC1008CYTA	C1008 YC		2000 / Fan-Fold
KSC1008GTA	C1008 G-		2000 / Fan-Fold

2. Affix "-C-" means center collector pin. Affix "-O-, $-Y-,-G-$ " means h ${ }_{\text {FE }}$ classification. Suffix "-BU" means bulk packing, straight lead form. Suffix "-TA" means tape and ammo packing, 0.200 in-line spacing lead form.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Static Characteristic

Figure 3. Base-Emitter Saturation Voltage and Collector-Emitter Saturation Voltage

Figure 5. Collector Output Capacitance

TO-92 3 4.825x4.76
 CASE 135AN
 ISSUE O

DATE 31 JUL 2016

NOTES: UNLESS OTHERWISE SPECIFIED
A) DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
4.19
C) DRAWING CONFORMS TO ASME Y14.5M-2009.

| DOCUMENT NUMBER: | 98AON13880G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 3 4.825X4.76 | PAGE 1 OF 1 |

TO-92 3 4.83x4.76 LEADFORMED
 CASE 135AR
 ISSUE O

DATE 30 SEP 2016

NOTES: UNLESS OTHERWISE SPECIFIED
A) DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.
B) ALL DIMENSIONS ARE IN MILLIMETERS.

C) DRAWING CONFORMS TO ASME Y14.5M-1994

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR NJL0281DG 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13

