ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ON Semiconductor®

KSC5305D NPN Silicon Transistor

Features

- · High Voltage High Speed Power Switch Application
- · Built-in Free-wheeling Diode makes efficient anti saturation operation
- · Suitable for half bridge light ballast Applications
- No need to interest an h_{FE} value because of low variable storage-time spread even though corner spirit product
- · Low base drive requirement

Absolute Maximum Ratings T_a = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CBO}	Collector Base Voltage	800	V
V _{CEO}	Collector Emitter Voltage	400	V
V_{EBO}	Emitter Base Voltage	12	V
I _C	Collector Current (DC)	5	Α
I _{CP}	*Collector Current (Pulse)	10	Α
I _B	Base Current (DC)	2	Α
I _{BP}	*Base Current (Pulse)	4	Α
P _C	Power Dissipation (T _C =25°C)	75	W
T _J	Junction Temperature	150	°C
T _{STG}	Storage Temperature	- 65 to 150	°C

^{*} Pulse Test : Pulse Width = 5mS, Duty cycles < 10%

Thermal Characteristics

Symbol	Parameter		Rating	Units
$R_{ heta jc}$	Thermal Resistance	Junction to Case	1.65	°C/W
$R_{ hetaja}$		Junction to Ambient	62.5	°C/W

Electrical Characteristics T_a =25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	I _C =1mA, I _E =0	800	-	-	V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C =5mA, I _B =0	400	-	-	V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E =1mA, I _C =0	12	-	-	V
I _{CBO}	Collector Cut-off Current	V _{CB} =500V, I _E =0	-	-	10	μΑ
I _{EBO}	Emitter Cut-off Current	V _{EB} = 9V, I _C = 0	-	-	10	μΑ
h _{FE1}	DC Current Gain	V _{CE} =1V, I _C =0.8A V _{CE} =1V, I _C =2A	22 8	-	-	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C =0.8A, I _B =0.08A I _C =2A, I _B =0.4A	-	-	0.4 0.5	V V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C =0.8A, I _B =0.08A I _C =2A, I _B =0.4A	-	-	1.0 1.0	V V
C _{ob}	Output Capacitance	V _{CB} =10V, f=1MHz	-	-	75	pF
t _{ON}	Turn On Time	V _{CC} =300V, I _C =2A,	-	-	150	ns
t _{STG}	Storage Time	I _{B1} =0.4A, I _{B2} =-1A,	-	-	2	μS
t _F	Fall Time	$R_L=150\Omega$	-	-	0.2	μS
t _{STG}	Storage Time	V _{CC} =15V, V _Z =300V, I _C =2A, I _{B1} =0.4A, I _{B2} =-0.4A, L _C =200μH	-	-	2.25	μS
t _F	Fall Time		-	-	150	ns
V _F	Diode Forward Voltage	I _F =1A I _F =2A	-	-	1.5 1.6	V V
t _{rr}	* Reverse recovery time (di/dt = 10A/µs)	I _F =0.4A I _F =1A I _F =2A	- - -	800 1.4 1.9		ns μs μs

^{*} Pulse Test : Pulse Width = 5mS, Duty cycles \leq 10%

Typical Characteristics

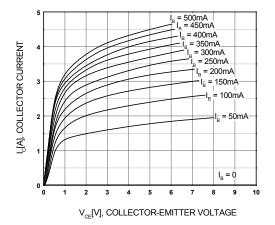
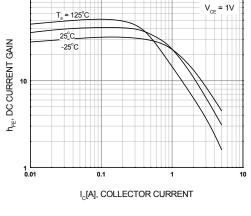



Figure 1. Static Characteristic

100

Figure 2. DC current Gain

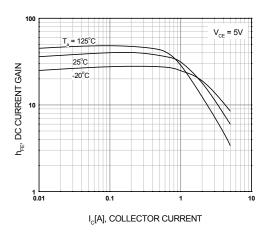


Figure 3. DC current Gain

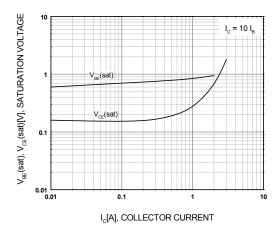


Figure 4. Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage

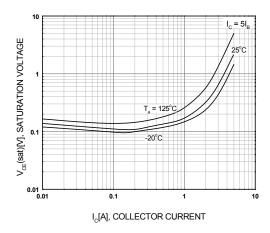


Figure 5. Collector-Emitter Saturation Voltage

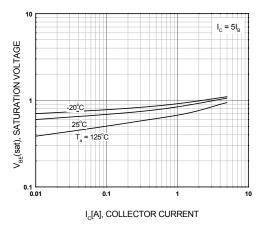


Figure 6. Base-Emitter Saturation Voltage

Typical Characteristics (Continued)

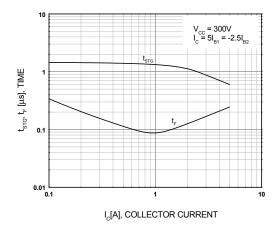


Figure 7. Switching Time

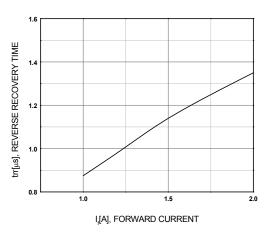


Figure 9. Reverse Recovery Time

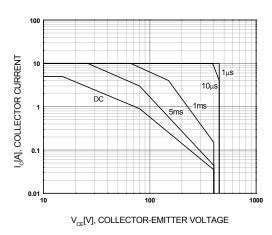
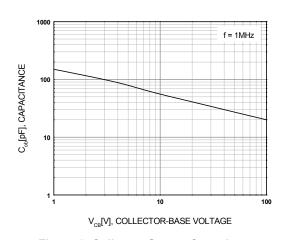



Figure 11. Safe Operating Area

Figure 8. Collector Output Capacitance

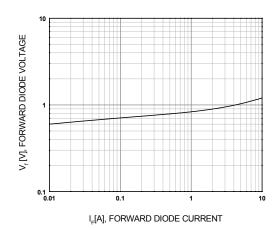


Figure 10. Forward Diode Voltage

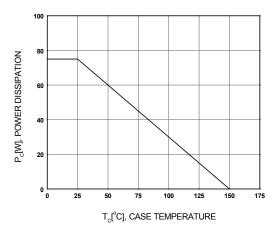


Figure 12. Power Derating

Typical Characteristics (Continued)

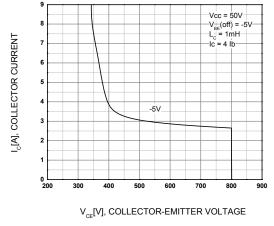


Figure 13. Reverse Bias Safe Operating

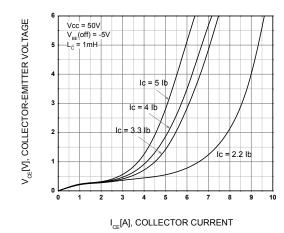


Figure 14. RBSOA Saturation

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E

NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13

NTE15 NTE16001