LA4631VC

Monolithic Linear IC

2-Channel SE AF Power Amplifier for Home Audio Use

ON Semiconductor ${ }^{\circledR}$
http:/lonsemi.com

Overview

The LA4631VC built-in a 2 channel single-ended output power amplifier that a power supply voltage range is wide and has additionally the standby function to reduce the current drain. It is a power amplifier IC suitable for driving speaker of various audio system equipments, which is especially useful for products that use batteries.

Functions

- Output power $=4.5 \mathrm{~W}$ (typical)

$$
\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \Omega, \mathrm{THD}+\mathrm{N}=10 \%\right)
$$

- Built in standby function (Pin5)
- Built in thermal suht down circuit

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$V_{\text {CC }}$ max	With no input signal	24	V
Maximum output current	Io peak	Per channel	2.5	A
Allowable power dissipation	Pd max	With an infinitely large heat sink	25	W
Operating temperature	Topr		-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V_{CC}		12	V
Recommended load resistance range	R_{L} op		3 to 8	Ω
Allowable operating supply voltage range	V_{CC} op		5.5 to 22	V

*: $\mathrm{V}_{\mathrm{CC}}, \mathrm{R}_{\mathrm{L}}$, and output level such that Pd max, is not exceeded for the size of heat sink used.

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{Rg}=600 \Omega$

Parameter	Symbol	Conditions	Ratings			Unit
			Min.	Typ.	Max.	
Quiescent current	$\mathrm{I}_{\mathrm{CCO}}$	$\mathrm{Rg}=0 \Omega$	18	35	80	mA
Standby current	Ist			1	10	$\mu \mathrm{A}$
Voltage gain	VG	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{dBm}$	33	35	37	dB
Total harmonic distortion	THD	$\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$		0.15	0.4	\%
Output power	PO_{0}	THD $=10 \%$	3.0	4.5		W
	$\mathrm{P}_{\mathrm{O}} 2$	$\mathrm{V}_{\text {CC }}=9 \mathrm{~V}, \mathrm{THD}=10 \%$	2.0	2.5		W
Output noise voltage	V_{NO}	$\mathrm{Rg}=0 \Omega$, $\mathrm{BPF}=20 \mathrm{~Hz}$ to 20 kHz		0.05	0.25	mVrms
Ripple rejection	SVRR	$\mathrm{Rg}=0 \Omega$, $\mathrm{f}_{\mathrm{R}}=100 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{CC}} \mathrm{R}=0 \mathrm{dBm}$	50	60		dB
Channel separation	CHsep	$\mathrm{Rg}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=0 \mathrm{dBm}$	55	65		dB
Input resistance	Ri		20	30	40	$\mathrm{k} \Omega$
Standby pin applied voltage	Vst	Amplifier on(Pin 5 voltage)	1.5	5.0		V

Package Dimensions

Unit : mm (typ)
3049C

Block Diagram

Application Circuit Example

External Components and Usage Notes

$\mathrm{C} 1, \mathrm{C} 2$: These are input coupling capacitors; we recommend a value of $1 \mu \mathrm{~F}$ or lower. The LA4631VC input pin potential is about 1.4 V , and the polarity must be considered due to the DC potential of the circuits connected to the LA4631VC front end. The amplifier's startup time (the time from the point power is first applied until the point an output is generated) will change proportionally with the values of these input capacitors. (When $1 \mu \mathrm{~F}$ capacitors are used, the startup time will be about 0.2 seconds.)
C3 : This capacitor is used as a ripple filter. We recommend a value of $100 \mu \mathrm{~F}$. Amplifier impulse noise when turned off (when the standby pin goes low) may be made worse if a value under $100 \mu \mathrm{~F}$ is used. The pin 1 voltage is about $1 / 2 V_{C C}$. A DC mute function can be applied if pin 1 is connected to ground through a 300 to 500Ω resistor. Note that the muting activation voltage will be too low if a resistor value of 750Ω or higher is used.
C4 : This is an impulse noise prevention capacitor. The recommended value is $4.7 \mu \mathrm{~F}$. If a value of $2.2 \mu \mathrm{~F}$ or lower is used for C4, impulse noise when the amplifier is turned off (when the standby pin goes low) may be made worse. Also, if a value of $10 \mu \mathrm{~F}$ or higher is used, an "incomplete muting" phenomenon may occur when the amplifier is turned off (when the standby pin goes low).
C5 : Power supply capacitor. This capacitor should be located as close as possible to the IC (to minimize increases in the power supply line impedance) to achieve stable amplifier operation.
C6, C7 : Output capacitors. These capacitors influence the amplifiers low band frequency characteristics. ($\mathrm{fc}=$ $1 / 2 \pi$ Cout $\times \mathrm{R}_{\mathrm{L}}$)
$\mathrm{fc}=$ low band cutoff frequency, Cout $=\mathrm{C} 6, \mathrm{C} 7$

(Reference) Pin 5 Equivalent Circuit Inside IC

- The amplifier can be turned on and off by controlling the level (high/low) of Pin 5.
- Applying a signal equal or greater than 1.5 V and $800 \mu \mathrm{~A}$ to Pin 5 turns on the amplifier. (If 5 V is applied directly to Pin 5 the inflow current od Pin 5 is approximately 4.5 mA .)
- If a voltage, Vx , exceeding 5 V is to be applied, current limiting resistor (Rx) should be inserted to limit the inflow current to 4.5 mA . (See following equation.)

$$
R x=(V x-5 V) / 4.5 m A
$$

- If Pin 5 is to be controlled by the microprocessor, the Pin 5 inflow current (Ix) should be optimized for the capacity of the microprocessor by calculating Rx using the following equation, as a general guideline, and then confirming the inflow current through sctual measurement.

$$
R x=(V x / I x)-R 1(2 k \Omega)
$$

Note: When apply voltage to standby (Pin 5), please add resistor (Rx).

LA4631VC

THD - PO

$\mathrm{Pd}-\mathrm{PO}\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\right)$

Pd - Po (VCC=9V)

THD - f

Icc - Po (Vcc=9V)

LA4631VC

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Audio Amplifiers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LV47002P-E NCP2811AFCT1G NCP2890AFCT2G SSM2377ACBZ-R7 IS31AP4915A-QFLS2-TR NCP2820FCT2G TDA1591T
TDA7563AH SSM2529ACBZ-R7 MAX9890AETA+T TS2012EIJT NCP2809BMUTXG NJW1157BFC2 SSM2375CBZ-REEL7
IS31AP4996-GRLS2-TR STPA002OD-4WX NCP2823BFCT1G MAX9717DETA+T MAX9717CETA+T MAX9724AEBC+TG45
LA4450L-E IS31AP2036A-CLS2-TR MAX9723DEBE+T TDA7563ASMTR AS3561-DWLT SSM2517CBZ-R7 MP1720DH-12-LF-P
SABRE9601K THAT1646W16-U MAX98396EWB+ PAM8965ZLA40-13 BD37532FV-E2 BD5638NUX-TR BD37512FS-E2 BD37543FS-
E2 BD3814FV-E2 TPA3140D2PWPR TS2007EIJT IS31AP2005-DLS2-TR SSM2518CPZ-R7 AS3410-EQFP-500 FDA4100LV
MAX98306ETD+T TS4994EIJT NCP2820FCT1G NCP2823AFCT2G NCS2211MNTXG CPA2233CQ16-A1 OPA1604AIPWR
OPA1612AQDRQ1

