LA5744TP

Monolithic Linear IC

Separately-Excited Step-Down Switching Regulator (Variable Type)

Overview

The LA5744TP is a separately-excited step-down switching regulator (variable type).

Functions

- High efficiency.
- Time-base generator (300kHz) incorporated.
- Current limiter incorporated.
- Thermal shutdown circuit incorporated.
- Soft start circuit incorporated.

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

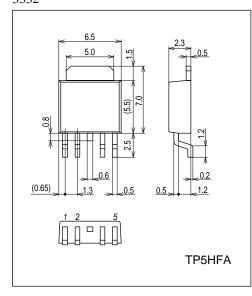
Parameter	Symbol	Conditions	Ratings	Unit
Input voltage	VIN		30	V
Maximum output current	I _O max		2	А
SW pin application reverse voltage	V _{SW}		-1	V
Allowable power dissipation	Pd max	Mounted on a circuit board.*	1.1	W
Operating temperature	Topr		-30 to +125	°C
Storage temperature	Tstg		-40 to +150	°C

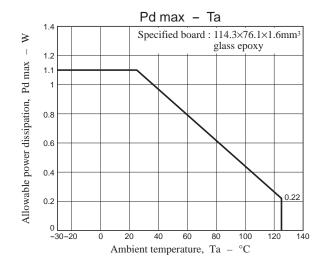
* Specified circuit board : 76.1×114.3×1.6mm³, glass epoxy.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Input voltage range	VIN		4.5 to 28	V

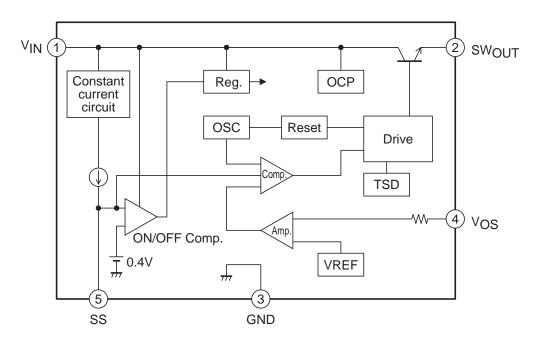

Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{O} = 5V$

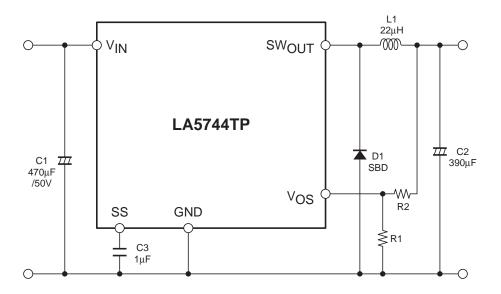

Parameter	Symbol	Conditions		Ratings		
			min	typ	max	Unit
Reference voltage	VOS	V _{IN} = 15V, I _O = 1.0A	1.20	1.23	1.26	V
Efficiency	η	V _{IN} = 15V, I _O = 1.0A		83		%
Switching frequency	f	V _{IN} = 15V, I _O = 1.0A	240	300	360	kHz
Line regulation	$\Delta V_O LINE$	V _{IN} = 8 to 20V, I _O = 1.0A		40	100	mV
Load regulation	∆V _O LOAD	$V_{IN} = 20V, I_O = 0.5 \text{ to } 1.5A$		10	30	mV
Output voltage temperature coefficient	∆V _O /∆Ta	Designed target value. *		±0.5		mV/°C
Ripple attenuation factor	RREJ	f = 100 to 120Hz		45		dB
Current limiter operating voltage	IS	V _{IN} = 15V	3.1			А
Thermal shutdown operating temperature	TSD	Designed target value. *		165		°C
Thermal shutdown Hysteresis width	ΔTSD	Designed target value. *		15		°C

* Design target value : No measurement made.

Package Dimensions

unit : mm (typ) 3332

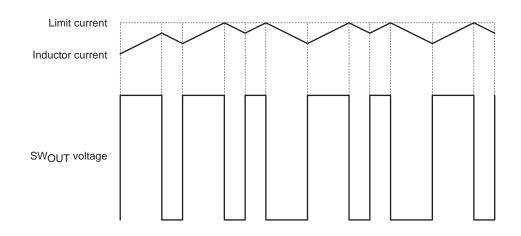



Pin Assignment

(1) V_{IN} (2) SW_{OUT} (3) GND (4) V_{OS} (5) SS

Block Diagram

Application Circuit Example


Notes :

- 1. C3 is for the soft start function. Delete C3 and keep the SS pin open when the soft start function is not necessary.
- 2. In some cases, the output may not turn on if power is applied when a load is connected. If this is a problem, increase the value of the inductor.

Protection Circuit Functional Descriptions

1. Overcurrent protection function

The overcurrent protection function detects, on a cycle-by-cycle basis, the output transistor current and turns off that output transistor current if it exceeds 3.1A.

2. Short circuit protection function

This IC prevents the current from increasing when the outputs are shorted by setting the switching frequency to 30kHz if the VOS pin voltage falls below 0.8V.

- Note 3 : If the soft start function is not used, the IC will start up with the overcurrent protection function operating. At this time, the switching frequency will be cut in half. This means that the switching frequency will be 15kHz at startup.
- Note 4 : Since the switching frequency becomes 30kHz when the VOS pin voltage falls under 0.8V, the current capacity is reduced. If a load is applied with the VOS pin voltage over 0.8V, the inductance value operates at 22μ H. If a load is to be applied when this voltage is under 0.8V, the inductance value must be increased.

Description of Functional Settings

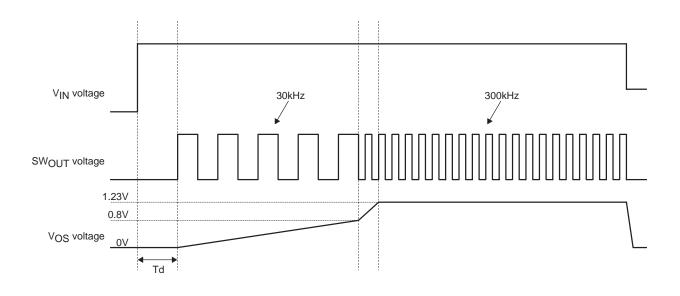
1. Calculation equation to set the output voltage

This IC controls the switching output so that the VOS pin voltage becomes 1.23V (typ).

The equation to set the output voltage is as follows :

$$V_O = \left(I + \frac{R^2}{RI}\right) \times 1.23V(typ)$$

The V_{OS} pin has the inrush current of 1µA (typ). Therefore, the error becomes larger when R1 and R2 resistance values are large.


2. Startup Delay Function

The output voltage rises when the internal voltage reaches 0.4V (typical). Until that point, a capacitor is charged from an internal $10\mu A$ (typical) constant-current supply. The startup delay time can be calculated as shown below

Example : Assume a 1μ F capacitor is used.

$$Td = \frac{C \times V}{i} = \frac{I\mu F \times 0.4}{I0\mu A} = 40 \text{ ms}$$

Timing Chart

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright have and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614 MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE#TRPBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6#TR LTC3803ES6#TRM LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM+ XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUX-CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1603-330IMC MCP1642B-18IMC MCP1642D-ADJIMC