LA72910V

Monolithic Linear IC FM Modulator and Demodulator IC

Overview

The LA72910V is a FM modulation and demodulation single-chip IC. Its adjustment free modulation/demodulation circuit significantly reduces the number of peripheral circuits required and can contribute to lower production costs.

Functions

- Video signal FM modulation and demodulation
- Video signal emphasis and de-emphasis function
- Drop-Out detecting function of Video FM signal
- FM mute function at Second-Call

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7.0	V
Allowable power dissipation	Pd max		300	mW
Operating temperature	Topr	Ta ≤ 70°C *	-30 to +70	°C
Storage temperature	Tstg		-40 to +150	°C

When mounted on a 114.3mm \times 76.1mm \times 1.6mm, glass epoxy.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		5.0	V
Allowable operating voltage range	V _{CC} op	Ta = -30 to +70°C	4.7 to 5.5	V

Electrical Characteristics at Ta = 25°C, $V_{CC} = 5V$ DC CHARACTERISTICS T6 = 0.4V, T9 = 2.0V, T10 = 0.4V

Parameter	Oursels al	1	OUT	T Oraditions	Ratings			Unit
Parameter	Symbol	In	001	Conditions	min	typ	max	Unit
Control terminal	CNT6L	T6		Low level of control terminal of ALL mode.	0		0.4	V
(Pin6,9) Low level	CNT9L	Т9		T6 = 0.4V(DEMOD mode),				
				T9 = 0.4V (Standby mode)				
Control terminal	CNT6H	T6		High level of input terminal of ALL mode	2.0		5.0	V
(Pin6,9)High level	CNT9H	Т9		T6 = 2.0V (MOD mode), T9 = 2.0V (Normal mode)				
Input5 Low level	IN5L	T5		Low level of input terminal of MOD mode	0		0.4	V
				T6 = 2.0V, T9 = 2.0V, T10 = 0.4V				
Input5 High level	IN5H	T5		High level of input terminal of MOD mode	2.0		5.0	V
				T6 = 2.0V, T9 = 2.0V, T10 = 0.4V				
Input10 Low level	IN10L	T10		Low level of input terminal of MOD mode	0		0.4	V
				T5 = 0.4V, T6 = 2.0V, T9 = 2.0V				
Input10 High level	IN10H	T10		High level of input terminal of MOD mode	2.0		5.0	V
				T5 = 0.4V, T6 = 2.0V, T9 = 2.0V				
Output10 terminal	OPH10		T10	DEMOD mode: FM-Signal input	4.7			V
High level				T6 = 0.4V, T9 = 2.0V, Pull-UP:15KΩ				
Output10 terminal	OPL13		T10	T10: DEMOD mode: FM No-signal	0	0.25	0.4	V
Low level	OPL18			Measure the sink level of output terminal.				
				T6 = 0.4V, T9 = 2.0V, Pull-UP:15KΩ				
Input12 Low level	IN12L	T12	T12	Voltage of terminal at AGC ON	0		3	V
				T6 = 0.4V, T9 = 2.0V				
Input12 High level	IN12H	T12	T12	Voltage of terminal at AGC OFF	4.5		5.0	V
				T6 = 0.4V, T9 = 2.0V				
5pin AC input dynamic	ACIN5	T5A	Т3	Input amplitude level of FM signal			1000	mVp-p
range				Freq: 11.5MHz to 13.5MHz				
16pin AC input	ACIN16	T16A	Т3	Maximum input level of T16A at Video signal			1.5	Vp-p
dynamic range								

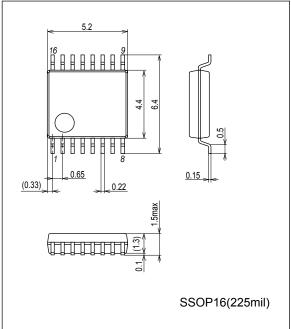
Video FM Modulation Block (MOD) T6=2.0V,T9=2.0V,T10=0.4V,T15=5V

Deremeter	Cumbal	ln.	OUT	Conditions		Ratings		Unit
Parameter	Symbol	In	001	Conditions	min	typ	max	Unit
Current dissipation	ICCR			measure the currents into pins 2 (MOD mode)	19.5	23.0	26.5	mA
FM modulator output	VFM1		Т3	Measure the output level on T3 (No signal input)		1.8	2.2	Vp-p
level				It is load impedance 200 Ω between T3-GND.				
FM Mute output level	VFM2		Т3	Measure the T3 output level with 2nd call	0	10	20	mVp-p
Carrier frequency	FFM		Т3	Measure the output frequency on T3	10.9	11.5	12.1	MHz
				with no signal input				
FM output Second	THD2		Т3	Measure the second harmonics distortion		-30	-20	dB
harmonic distortion				with the above condition				
Deviation	DEV	T16A	Т3	With T16A 100% White 1Vp-p signal,	1.9	2.0	2.1	MHz
				Measure the deviation on T3				
FM modulator linearity	LMOD	T16A	Т3	Let f2.85, f3.35 and f3.85 be the output frequency	-2	0	+2	%
(11.5MHz to 13.5MHz)				when 2.85V, 3.35V and 3.85V is applied to T16A				
				LMOD= $\frac{f3.35 - (f3.85 + f2.85) / 2}{f3.85 - f2.85} \times 100$				
Emphasis gain	GEMP	T16A	T12	With V _{IN} a 300mVp-p 10kHz sine wave,	-7.5	-6.0	-4.5	dB
				Measure the ratio of the levels on T16A and T12				
Main linear emphasis	GME1	T16A	T12	With VIN a 300mVp-p 500kHz sine wave,	-1.5	0.0	+1.5	dB
characteristics(1)				Measure the ratio of the levels on T16A and T12				
Main linear emphasis	GME2	T16A	T12	With VIN a 300mVp-p 2MHz sine wave,	2.5	4.0	5.5	dB
characteristics(2)				Measure the ratio of the levels on T16A and T12				
White clipping level	LWC	T16A	T12	With V _{IN} a 1.5Vp-p 100% white video signal.	180	200	220	%
				Measure the white clipping level on T12				
Dark clipping level	LDC	T16A	T12	With V _{IN} a 1.5Vp-p 100% white video signal.	-60	-50	-40	%
				Measure the dark clipping level on T12.				
FM stop beginning	TC1	T5	Т3	C7=0.01 μ F, Time from fall of T5 signal to doing of	240	300	360	μsec
delay time				FM carrier of T3 STOP				
(VD characteristic 1B)								
FM stop time	TC2	T5	Т3	C8=0.001 μ F, Stop time of FM carrier of T3	30	40	50	μsec
(VD characteristic2A)								
Minimum VD pulse	VDT	T5	Т3	C7=0.01 μ F, Minimum VD pulse width to which	63			μsec
width				TC1B is normally output				

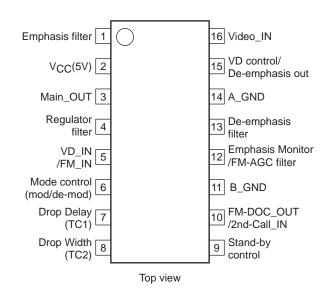
LA72910V

Video FM De-modulation Block (DEMOD) T6=0.4V,T9=2.0V

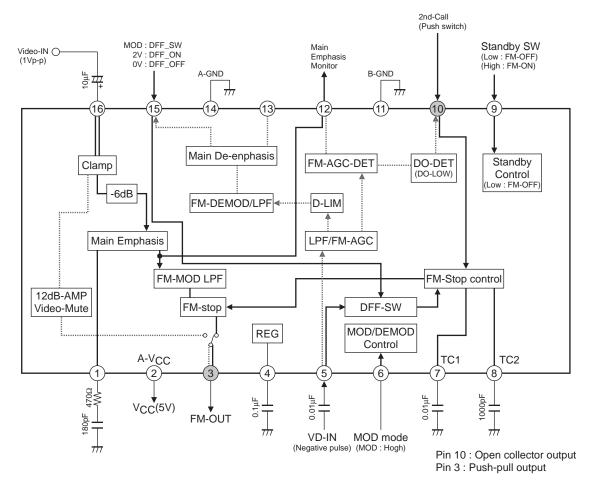
Parameter Symbol In OUT		Conditions		Ratings		Unit		
Current dissinction	La - D			Measure the surrents into nin 2 (DEMOD mode)	min	typ	max	
Current dissipation	ICCP			Measure the currents into pin 2 (DEMOD mode)	24.0	28.0	32.0	mA
Video output level	VOUT	T5A	Т3	Demodulation level, when the FM signal of 2.2MHz deviation. Load impedance = $1k\Omega$ T3-GND.	2.09	2.2	2.31	Vpp
Video output level B	VOUTB	T5A	Т3	Demodulation level, when the FM signal of 2.0MHz deviation. Load impedance = $1k\Omega$ T3-GND. In this case only, V _{CC} make 4.5V to 5.5V.	1.9	2.0	2.1	Vpp
FM stop detection level (DOC characteristic 1)	DOC1	T5A T12	T10 T12	T5 = 11.5MHz, 300mVp-p. Measure T12 voltage (V12). Set T12 V12 (AGC-Fix). T5 input level when T5 amplitude is decrease gradually, and T10 becomes "Low"		40	60	mVp-p
(Drop Delay Down)	DDD	T5A T12	T10 T12	Shift time from T5=300mVp-p→0mVp-p to T10"Low".	0.5	1.5	2.5	μsec
FM return judgment level	DOC2	T5A T12	T10 T12	T5=11.5MHz, 300mVpp, Measure T12 Voltage (V12). Set T12 V12 (AGC-Fix). T5 inputs the level when T5 amplitude is increase gradually, and T10 becomes "High"		60	90	mVp-ŗ
Video DC level when returning	DOC2B	T5A T12	T15	Confirmation of output of Video signal from T3. Measurement of DC level.	0.5	1.0	1.5	V
(Drop Delay Rise) Return operation delay time	DWR	T5A T12	T10 T12	Shift time from T5 = 0mVp-p→300mVp-p to T10"High"	0.2	1.5	2.5	μsec
4V Regulator	VREG		T4	Measurement of T4 DC level.	3.9	4.0	4.3	V
Range of input Dynamic range	ACIN5	T5A	Т3	DEV = 2.0MHz. Input amplitude level of FM signal. (T5A: 11.5MHz to 13.5MHz)		500	1000	mVp-p
DG	DG	T5A	Т3		0	6	10	%
DP	DP	T5A	Т3		0	6	10	deg
Output voltage at mute	MUV		T3	Mute level measurement of T3	0	10	20	IRE
FM demodulation voltage	VDEM11 VDEM12	T5A	T15	T5A = 11MHz, 100mVp-p, 200mVp-p and 400mVp-p.	0.3	0.8	1.3	V
(11.0M)	VDEM12			Each T15 voltage measurement				
FM demodulation voltage	VDEM21 VDEM22	T5A	T15	T5A = 12.5MHz, 100mVp-p, 200mVp-p and 400mVp-p.	0.7	1.2	1.7	V
(12.5M) FM demodulation	VDEM23	TC A	T 45	Each T15 voltage measurement		1.0	0.1	v
voltage (14.0M)	VDEM31 VDEM32 VDEM33	T5A	T15	T5A = 14MHz, 100mVp-p, 200mVp-p and 400mVp-p Each T15 voltage measurement	1.1	1.6	2.1	v
FM demodulation linearity1.2.3	LDEM1 LDEM2 LDEM3			Calculate FM demodulation linearity LDEM1 = {[VDEM21 - (VDEM11 + VDEM31) / 2]	-2	0	+2	%
FM demodulation Sensitivity1.2.3	SDEM1 SDEM2 SDEM3			Calculate FM recovery Sensitivity with consider pin3 output level conversion ratio. SDEM1 = (VDEM31-VDEM11)/2.5 SDEM2 = (VDEM32-VDEM12)/2.5 SDEM3 = (VDEM33-VDEM13)/2.5	0.28	0.33	0.38	V/MH
Main linear de-emphasis amplitude	GMED	T5A	T15	T5=200mVp-p FM signal (fm = 10kHz,Center Carrier = 12.5MHz, DEV = 1.0MHz) Signal level of T15	243	270	297	mVp-j
Main linear de-emphasis	GMED1	T5A	T15	T5 = 200mVp-p FM signal (fm = 500kHz, Center Carrier = 12.5MHz, DEV = 1.5MHz). Signal level	-8.0	-6.0	-4.0	dB
Characteristics(1) Main linear de-emphasis Characteristics(2)	GMED2	T5A	T15	of T15 versus GMRD (Ratio of GMED). T5 = 200mVp-p FM signal (fm = 2MHz, Center Carrier = 9.25MHz, DEV = 1.5MHz). Signal level of T15 versus GMRD (Ratio of GMED)	-11.0	-9.0	-7.0	dB


Standby (Standby mode) T9=0.4V

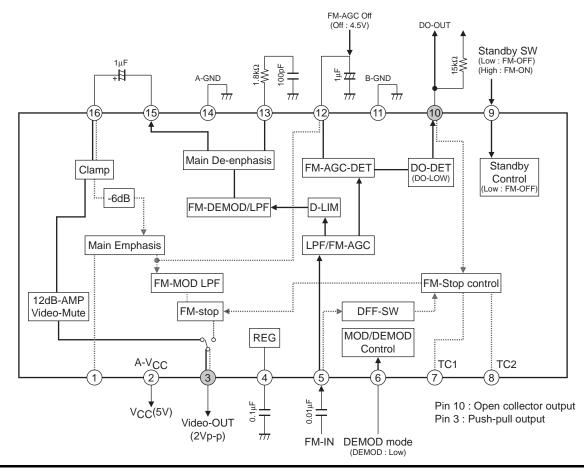
Demenden	Ourseland	1		Conditions	Ratings			1.1.4.14
Parameter	Symbol	In	OUT	Conditions	min	typ	max	Unit
Current dissipation at standby	ICCS	Т9		Measure the currents into pin 2. (Standby mode)	5.0	8.0	11.0	mA
Standby release time(1) (FM stop→release)	SASK1	Т6 Т9	Т3	T6 = 2.0VDC T9 = 0V \rightarrow 2V (Standby release) Time until FM career is output to T3.	0.0	1.0	2.0	usec
Standby release time(2) (Video signal stop →release)	SASK2	T6 T5A T9	Т3	T6 = 0.4V, T5 = DEV = 1.5MHz 100% white video signal of FM signal. T9 = 0V \rightarrow 2V (Standby release), Time until white 100% signal is output to T3	2.0	7.0	12.0	usec


Package Dimensions

unit : mm (typ)



Pin Assignment



LA72910V

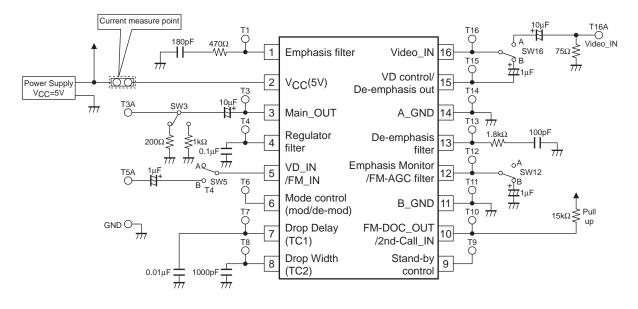
Block Diagram and Application Circuit Example1 Modulation (Camera)

Application Circuit Example2 Demodulation (Monitor)

Pin No.	Pin name	FM MOD mode(Outside camera)	FM DEMOD mode(Inside Monitor)	Note
1	Emphasis filter	Emphasis filter connection pin	Non connect(Hi-Z)	If you don't need, this pin is open.
2	V _{CC} 5V	V _{CC} for FM modulation.	V _{CC} for FM demodulation.	
3	Main_OUT	FM Output (Ro=200Ω:1.8Vp-p)	Video Output (Ro=1kΩ:2Vp-p)	Push-pull output
4	Regulator filter	FM modulation block reference DC power supply.	FM demodulation block reference DC power supply.	
5	VD_IN/FM_IN	VD Input (Hi: over 2V, Low: under 0.4V) (VD DET: High)	FM Input (Recommend Level: 100 to 620mVp-p)	DEMOD mode:Set 3.3V by internal bias. (34kΩ/66kΩ)
6	Mode control	Set over 2V DC voltage.	Set under 0.4V DC voltage.	Outside camera / Inside monitor setting.
7	Drop delay (TC1)	Connect TC1 setting C.	Non connect(Hi-Z)	
8	Drop Width (TC2)	Connect TC2 setting C.	Non connect(Hi-Z)	
9	Stand-by control	FM blocks standby control. (FM block operate: over 2V , FM block standby: under 0.4V)	←	
10	FM-DOC-OUT /2nd-Call control	2nd-Call input, 2nd-Call: Low (High: over 2V, Low: under 0.4V)	DOC output (When DO-DET, output is Low)	DEMOD mode: Open collector output.
11	B-GND	Circuit GND	←	
12	Emphasis Monitor /FM-AGC filter	Emphasis monitor output	FM AGC control filter (AGC-ON: 0 to 3V DC, AGC-OFF: 4.5V to 5V by external DC voltage.)	MOD mode: Don't connect capacitor.
13	De-emphasis filter	Non connect(Hi-Z)	De-emphasis filter connection pin.	If you don't need, this pin is open.
14	A-GND	Circuit GND	←	
15	VD control /De-emphasis out	DFF control (ON: over 2V, OFF: under 0.4V)	DE-emphasis output	
16	Video_IN	Video signal input (from outside CCD camera: 1Vp-p).	Video signal input (from de-emphasis block: 0.5Vp-p).	MOD mode: Maximum video inpu level is 1.5Vp-p.

Pin	Description	

Pin No.	Pin Name	Description	Equivalent circuit
1	Emphasis filter	Main Emphasis filter pin. Before FM Modulation, make emphasis characteristic at video signal. Emphasis time constant must be matching at de-emphasis time constant. (If you don't need the emphasis, this pin is open.)	
2	V _{CC} 5V	V _{CC} pin. Supply voltage is 5V DC. Please connect de-coupling capacitor.	
3	Main_OUT	Push-Pull output pin. MOD mode: FM carrier output. (1.8Vp-p: Rout=200Ω) DEMOD mode: Video signal output. (2.0Vp-p: Rout=1kΩ)	MOD DEMOD J
4	Regulator filter	Internal regulator filter pin. Please connect 0.1μF (C1)	
5	VD_IN/FM_IN	DEMOD mode: FM signal input. Internal DC bias is 3.3V. Please use capacitor (C1) coupling. MOD mode: VD signal input. Please input VD signal directory. Please consider input impedance.	FM Sig VD Sig
6	Mode control	MOD mode/ DEMOD mode setting pin. MOD mode: Please set over 2V DC voltage. (2 to 5V). DEMOD mode: Please set under 0.4V DC voltage. (0 to 0.4V).	


Continued on next page.

Pin No.	Pin Name	Description	Equivalent circuit
7	Drop delay (TC1)	MOD mode: TC1 filter pin. Please connect C1.	
8	Drop Width (TC2)	MOD mode: TC2 filter pin. Please connect C1.	
9	Stand-by control	Standby control pin. FM block standby: under 0.4V DC voltage. (0 to 0.4V) FM block operate: over 2V DC voltage. (2 to 5V)	
10	FM-DOC-OUT /2nd-Call control	DEMOD mode: Drop-out output pin. This pin is open collector output, so please connect pull up resistor. MOD mode: 2nd-CALL input. 2nd-CALL input: under 0.4V (0 to 0.4V) DC. Normal: over 2V DC voltage. (2 to 5V)	
11	B-GND	Circuit GND.	
12	Emphasis Monitor /FM-AGC filter	MOD mode: Emphasis monitor pin. DEMOD mode: FM AGC filter pin. If FM AGC no need (=AGC Off), Please set pin12 voltage over 4.5V DC voltage. (4.5 to 5V)	АGC-DET ЕМР МОNI 100kΩ 100kΩ 100kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ

Continued on next page.

	from preceding page.	Description	Envirole de la la la
Pin No.	Pin Name	Description	Equivalent circuit
13	De-emphasis filter	DEMOD mode: De-emphasis filter pin. De-emphasis time constant must be matching at emphasis time constant. (If you don't need the emphasis, this pin is open.)	R1 HI R1 HI
14	A-GND	Circuit GND.	
15	VD control /De-emphasis out	DEMOD mode: Video signal output after De-emphasis. Output level is 0.5Vp-p. Connect capacitor to clamp input (pin 16). MOD mode: DFF control pin. DFF is ON at over 2V DC voltage. (2 to 5V)	MOD : DC IN DEMOD C1 J
16	Video_IN	MOD mode: Video signal input pin (from camera). Input level is 1Vp-p. DEMOD mode: Video signal input pin (from de-emphasis). Input level is 0.5Vp-p.	Video input MOD : 1Vp-p DEMOD : 0.5Vp-p

Test Circuit

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized use, even if such choile attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affimative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Modulator/Demodulator category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

LC72722PM-TLM-E HMC495LP3TR LT5571EUF#PBF LT5528EUF#PBF LT5502EGN#PBF THAT1510S08-U CMX589AD5 ADRF6821ACPZ AD630ADZ AD630ARZ AD630JNZ AD630KNZ AD8346ARUZ-REEL7 AD8339ACPZ AD8345ARE AD8345AREZ AD8345AREZ-RL7 AD8347ARUZ AD8347ARUZ-REEL7 AD8348ARUZ AD8349AREZ AD8349AREZ-RL7 ADL5371ACPZ-R7 ADL5387ACPZ-WP ADL5387ACPZ-R7 ADL5372ACPZ-R7 ADL5373ACPZ-R7 ADA2200ARUZ-REEL7 AD8346ARUZ ADL5380-EVALZ ADL5382ACPZ-R7 AD630ARZ-RL ADL5375-15ACPZ-R7 ADL5380ACPZ-R7 AD8333ACPZ-WP AD8341ACPZ-REEL7 ADRF6703ACPZ-R7 ADRF6750ACPZ-R7 ADRF6806ACPZ-R7 HMC1097LP4E HMC630LP3ETR HMC500LP3ETR HMC495LP3ETR HMC500LP3E HMC630LP3E HMC631LP3E HMC795LP5E LT5516EUF LTC5598IUF MC1496DR2G