## LA72912V

## FM Modulator and Demodulator IC

## Overview

The LA72912V is a FM modulation and demodulation single－chip IC．Its adjustment free modulation／demodulation circuit significantly reduces the number of peripheral circuits required and can contribute to lower production costs．

## Functions

－ASK Modulation and Demodulation
－Video Signal FM Modulation and Demodulation
－Video Signal Emphasis and De－emphasis Function
－Drop－Out Detecting Function of Video FM Signal
－FM Mute Function at Second－Call

MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Conditions | Ratings | Unit |
| :--- | :---: | :---: | :---: | :---: |
| Maximum Supply Voltage | $\mathrm{V}_{\mathrm{CC}} \max$ |  | 7.0 | V |
| Allowable Power <br> Dissipation | $\mathrm{Pd} \max$ |  | 300 | mW |
| Operating Temperature | Topr | $\mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ <br> （Note 1） | -30 to +70 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | Tstg |  | -40 to +150 | ${ }^{\circ} \mathrm{C}$ |

Stresses exceeding those listed in the Maximum Ratings table may damage the device．If any of these limits are exceeded，device functionality should not be assumed，damage may occur and reliability may be affected．
1．Mounted on a $114.3 \mathrm{~mm} \times 76.1 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ ，glass epoxy board．

RECOMMENDED OPERATING CONDITIONS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Conditions | Ratings | Unit |
| :--- | :---: | :---: | :---: | :---: |
| Recommended <br> Supply Voltage | VCC |  | 5.0 | V |
| Allowable Operating <br> Voltage Range | $\mathrm{V}_{\mathrm{CC}}$ op | $\mathrm{T}_{\mathrm{A}}=-30$ to $+70^{\circ} \mathrm{C}$ | 4.7 to 5.5 | V |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied．Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability．

ON Semiconductor ${ }^{\circledR}$
www．onsemi．com


SSOP24
CASE 565AQ

MARKING DIAGRAM

| 明明明明明明 |
| :---: |
| XXXXXXXXXX |
| YMDDD |
| $\bigcirc$ |
|  |

XXXXX＝Specific Device Code
$Y=$ Year
M＝Month
DDD＝Additional Traceability Data

ORDERING INFORMATION

| Device | Package | Shipping $^{\dagger}$ |
| :---: | :---: | :---: |
| LA72912V－TLM－H | SSOP24 <br> （Pb－Free／ <br> Halogen Free） | Tape \＆Reel |

$\dagger$ For information on tape and reel specifications， including part orientation and tape sizes，please refer to our Tape and Reel Packaging Specification Brochure，BRD8011／D．

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

| Parameter | Symbol | In | Out | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

DC CHARACTERISTICS (T6 $=0.4 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}, \mathrm{~T} 18=0.4 \mathrm{~V}$ )

| Control Terminal (Pin 6,9) Low Level | CNT6L CNT17L | $\begin{gathered} \text { T6 } \\ \text { T17 } \end{gathered}$ |  | Low level of control terminal of ALL mode. <br> T6 = 0.4 V (DEMOD mode), <br> T17 = 0.4 V (Standby mode) | 0 |  | 0.4 | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Control Terminal (Pin 6,9) High Level | CNT6H <br> CNT17H | $\begin{gathered} \text { T6 } \\ \text { T17 } \end{gathered}$ |  | High level of input terminal of ALL mode T6 = 2.0 V (MOD mode), T17 = 2.0 V (Normal mode) | 2.0 |  | 5.0 | V |
| Input5 Low Level | IN5L | T5 |  | Low level of input terminal of MOD mode $\begin{aligned} & \mathrm{T} 6=2.0 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}, \\ & \mathrm{~T} 18=0.4 \mathrm{~V} \end{aligned}$ | 0 |  | 0.4 | V |
| Input5 High Level | IN5H | T5 |  | High level of input terminal of MOD mode $\begin{aligned} & \mathrm{T} 6=2.0 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}, \\ & \mathrm{~T} 18=0.4 \mathrm{~V} \end{aligned}$ | 2.0 |  | 5.0 | V |
| Input18 Low Level | IN18L | T18 |  | Low level of input terminal of MOD mode $\begin{aligned} & \mathrm{T} 5=0.4 \mathrm{~V}, \mathrm{~T} 6=2.0 \mathrm{~V}, \\ & \mathrm{~T} 17=2.0 \mathrm{~V} \end{aligned}$ | 0 |  | 0.4 | V |
| Input18 High Level | IN18H | T18 |  | High level of input terminal of MOD mode $\begin{aligned} & \mathrm{T} 5=0.4 \mathrm{~V}, \mathrm{~T} 6=2.0 \mathrm{~V}, \\ & \mathrm{~T} 17=2.0 \mathrm{~V} \end{aligned}$ | 2.0 |  | 5.0 | V |
| Output18 Terminal High Level | OPH18 |  | T18 | DEMOD mode: FM-Signal input $\mathrm{T} 6=0.4 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V} \text {, }$ <br> Pull-up: $15 \mathrm{k} \Omega$ | 4.7 |  |  | V |
| Output18 Terminal Low Level | OPL13 OPL18 |  | T18 | T18: DEMOD mode: <br> FM No-signal Measure the sink level of output terminal. $\mathrm{T} 6=0.4 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V},$ <br> Pull-up: $15 \mathrm{k} \Omega$ | 0 | 0.25 | 0.4 | V |
| Input20 Low Level | IN20L | T20 | T20 | Voltage of terminal at AGC ON $\mathrm{T} 6=0.4 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}$ | 0 |  | 3 | V |
| Input20 High Level | IN20H | T20 | T20 | Voltage of terminal at AGC OFF $\mathrm{T} 6=0.4 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}$ | 4.5 |  | 5.0 | V |
| 5pin AC Input Dynamic Range | ACIN5 | T5A | T3 | Input amplitude level of FM signal Freq: 11.5 MHz to 13.5 MHz |  |  | 1000 | mVp-p |
| 16pin AC Input Dynamic Range | ACIN16 | T24A | T3 | Maximum input level of T24A at Video signal |  |  | 1.5 | $V \mathrm{p}-\mathrm{p}$ |

VIDEO FM MODULATION BLOCK (MOD) (T6 = 2.0 V, T17 $=2.0 \mathrm{~V}, \mathrm{~T} 18=0.4 \mathrm{~V}$ )

| Current Dissipation | ICCR |  | Measure the currents into pins 2 <br> (MOD mode) | 22.0 | 27.0 | 32.0 | mA |  |
| :--- | :---: | :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| FM Modulator <br> Output Level | VFM1 |  | T3 | Measure the output level on T3 <br> (No signal input) <br> It is load impedance $200 ~$ <br> between T3-GND. |  | 1.8 | 2.2 | Vp-p |
| FM Mute Output Level | VFM2 |  | T3 | Measure the T3 output level with <br> 2nd call | 0 | 10 | 20 | $\mathrm{mVp}-\mathrm{p}$ |
| Carrier Frequency | FFM |  | T3 | Measure the output frequency on <br> T3 with no signal input | 10.9 | 11.5 | 12.1 | MHz |
| FM Output Second <br> Harmonic Distortion | THD2 |  | T3 | Measure the second harmonics <br> distortion with the above condition |  | -30 | -20 | dB |

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$ (continued)

| Parameter | Symbol | In | Out | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

VIDEO FM MODULATION BLOCK (MOD) (T6 = 2.0 V, T17 $=2.0 \mathrm{~V}, \mathrm{~T} 18=0.4 \mathrm{~V}$ )

| Deviation | DEV | T24A | T3 | With T24A 100\% White 1Vp-p signal, <br> Measure the deviation on T3 | 1.9 | 2.0 | 2.1 | MHz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FM Modulator Linearity (11.5 to 13.5 MHz ) | LMOD | T24A | T3 | Let $\mathrm{f} 2.85, \mathrm{f} 3.35$ and f 3.85 be the output frequency when 2.85 V , 3.35 V and 3.85 V is applied to T24A LMOD $=\{[f 3.35-(\mathrm{f} 3.85+\mathrm{f} 2.85) /$ 2] / ( $\ddagger 3.85-\mathrm{f} 2.85)] \times 100\}$ | -2 | 0 | +2 | \% |
| Emphasis Gain | GEMP | T24A | T20 | With $\mathrm{V}_{\mathrm{IN}}$ a $300 \mathrm{mVp}-\mathrm{p} 10 \mathrm{kHz}$ sine wave, Measure the ratio of the levels on T24A and T20 | -7.5 | -6.0 | -4.5 | dB |
| Main Linear Emphasis Characteristics(1) | GME1 | T24A | T20 | With $\mathrm{V}_{\mathrm{IN}}$ a $300 \mathrm{mVp}-\mathrm{p} 500 \mathrm{kHz}$ sine wave, Measure the ratio of the levels on T24A and T20 | 0.0 | 1.5 | 3.0 | dB |
| Main Linear Emphasis Characteristics(2) | GME2 | T24A | T20 | With $\mathrm{V}_{\mathrm{IN}}$ a $300 \mathrm{mVp}-\mathrm{p} 2 \mathrm{MHz}$ sine wave, Measure the ratio of the levels on T24A and T20 | 4.0 | 5.5 | 7.0 | dB |
| White Clipping Level | LWC | T24A | T20 | With $\mathrm{V}_{\mathrm{IN}}$ a $1.5 \mathrm{Vp}-\mathrm{p} 100 \%$ white video signal. Measure the white clipping level on T20 | 180 | 200 | 220 | \% |
| Dark Clipping Level | LDC | T24A | T20 | With $\mathrm{V}_{\mathrm{IN}}$ a $1.5 \mathrm{Vp}-\mathrm{p} 100 \%$ white video signal. Measure the dark clipping level on T20. | -60 | -50 | -40 | \% |
| FM Stop Beginning Delay Time (VD Characteristic 1B) | TC1 | T5 | T3 | C7 $=0.01 \mu \mathrm{~F}$, Time from fall of T5 signal to doing of FM carrier of T3 STOP | 240 | 300 | 360 | $\mu \mathrm{s}$ |
| FM Stop Time (VD Characteristic 2A) | TC2 | T5 | T3 | C8 $=0.001 \mu \mathrm{~F}$, Stop time of FM carrier of T3 | 30 | 40 | 50 | $\mu \mathrm{s}$ |
| Minimum VD Pulse Width | VDT | T5 | T3 | C7 $=0.01 \mu \mathrm{~F}$, Minimum VD pulse width to which TC1B is normally output | 63 |  |  | $\mu \mathrm{S}$ |

VIDEO FM DE-MODULATION BLOCK (DEMOD) (T6 = $0.4 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}$ )

| Current Dissipation | ICCP |  |  | Measure the currents into pin 2 <br> (DEMOD mode) | 26.0 | 32.0 | 38.0 | mA |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Video Output Level | VOUT | T5A | T3 | Demodulation level, when the FM <br> signal of 2.2 MHz deviation. Load <br> impedance = 1 k T3-GND. | 2.09 | 2.2 | 2.31 | $\mathrm{Vp}-\mathrm{p}$ |
| Video Output Level B | VOUTB | T5A | T3 | Demodulation level, when the FM <br> signal of 2.0 MHz deviation. Load <br> impedance $1 \mathrm{k} \Omega$ T3-GND. <br> (In this case only, VCC make 4.5 V <br> to 5.5 V.) | 1.9 | 2.0 | 2.1 | $\mathrm{Vp-p}$ |
| FM Stop Detection <br> Level <br> (DOC Characteristic 1) | DOC1 | T5A <br> T20 | T18 <br> T20 | T5 = 11.5 MHz, 300 mVp-p. <br> Measure T20 voltage (V20). Set <br> T20 V20 (AGC-Fix). T5 input <br> level when T5 amplitude is de- <br> crease gradually, and T18 <br> becomes "Low" |  | 40 | 60 | $\mathrm{mVp-p}$ |
| (Drop Delay Down) | DDD | T5A <br> T20 | T18 <br> T20 | Shift time from T5 = 300 mVp-p <br> $\rightarrow 0$ mVp-p to T18 "Low" | 0.5 | 1.5 | 2.5 | $\mu \mathrm{~s}$ |

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$ ) (continued)

| Parameter | Symbol | In | Out | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

VIDEO FM DE-MODULATION BLOCK (DEMOD) (T6 = $0.4 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}$ )

| FM Return Judgment Level | DOC2 | $\begin{aligned} & \text { T5A } \\ & \text { T20 } \end{aligned}$ | $\begin{aligned} & \text { T18 } \\ & \text { T20 } \end{aligned}$ | T5 $=11.5 \mathrm{MHz}, 300 \mathrm{mVp}-\mathrm{p}$, Measure T20 Voltage (V20). Set T20 V20 (AGC-Fix). T5 inputs the level when T5 amplitude is increase gradually, and T18 becomes "High" |  | 60 | 90 | mVp-p |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Video DC Level when Returning | DOC2B | $\begin{aligned} & \text { T5A } \\ & \text { T20 } \end{aligned}$ | T23 | Confirmation of output of Video signal from T3. Measurement of DC level. | 0.5 | 1.0 | 1.5 | V |
| (Drop Delay Rise) Return Operation Delay Time | DWR | $\begin{aligned} & \text { T5A } \\ & \text { T20 } \end{aligned}$ | $\begin{aligned} & \text { T18 } \\ & \text { T20 } \end{aligned}$ | Shift time from T5 $=0 \mathrm{mVp}-\mathrm{p} \rightarrow$ $300 \mathrm{mVp}-\mathrm{p}$ to T 18 "High" | 0.2 | 1.5 | 2.5 | $\mu \mathrm{s}$ |
| 4 V Regulator | VREG |  | T4 | Measurement of T4 DC level | 3.9 | 4.0 | 4.3 | V |
| Range of Input Dynamic Range | ACIN5 | T5A | T3 | DEV $=2.0 \mathrm{MHz}$. Input amplitude level of FM signal. <br> (T5A: 11.5 MHz to 13.5 MHz ) |  | 500 | 1000 | mV p-p |
| DG | DG | T5A | T3 |  | 0 | 6 | 10 | \% |
| DP | DP | T5A | T3 |  | 0 | 6 | 10 | deg |
| Output voltage at Mute | MUV |  | T3 | Mute level measurement of T3 | 0 | 10 | 20 | IRE |
| FM Demodulation Voltage (11.0M) | VDEM11 <br> VDEM12 <br> VDEM13 | T5A | T23 | $T 5 A=11.0 \mathrm{MHz}, 100 \mathrm{mVp}-\mathrm{p}$, $200 \mathrm{mVp}-\mathrm{p}$ and $400 \mathrm{mVp}-\mathrm{p}$. Each T23 voltage measurement | 0.3 | 0.8 | 1.3 | V |
| FM Demodulation Voltage (12.5M) | VDEM21 <br> VDEM22 VDEM23 | T5A | T23 | T5A = 12.5 MHz, $100 \mathrm{mVp}-\mathrm{p}$, $200 \mathrm{mVp}-\mathrm{p}$ and $400 \mathrm{mVp}-\mathrm{p}$. Each T23 voltage measurement | 0.7 | 1.2 | 1.7 | V |
| FM Demodulation Voltage (14.0M) | VDEM31 <br> VDEM32 <br> VDEM33 | T5A | T23 | T5A $=14 \mathrm{MHz}, 100 \mathrm{mVp}-\mathrm{p}$, $200 \mathrm{mVp}-\mathrm{p}$ and $400 \mathrm{mVp}-\mathrm{p}$. Each T23 voltage measurement | 1.1 | 1.6 | 2.1 | V |
| FM Demodulation Linearity $1,2,3$ | LDEM1 LDEM2 LDEM3 |  |  | Calculate FM demodulation linearity LDEM1 $=\{$ VDEM21 - (VDEM11 + VDEM31) / 2] /(VDEM31 - VDEM11) $\} \times 100$ LDEM2 $=\{$ VDEM22 - (VDEM12 + VDEM32) /2 $]$ /(VDEM32 - VDEM12) $\} \times 100$ LDEM3 $=\{$ VDEM23 - (VDEM13 + VDEM33) / 2] /(VDEM33 - VDEM13) $\} \times 100$ | -2 | 0 | +2 | \% |
| FM Demodulation Sensitivity 1,2,3 | SDEM1 SDEM2 SDEM3 |  |  | Calculate FM recovery Sensitivity with consider pin 3 output level conversion ratio. $\begin{aligned} & \text { SDEM1 = (VDEM31-VDEM11) / } \\ & 3.0 \\ & \text { SDEM2 }=(\text { (VDEM32-VDEM12 }) ~ / ~ \\ & 3.0 \\ & \text { SDEM3 }=(\text { VDEM33-VDEM13 }) / \\ & 3.0 \end{aligned}$ | 0.28 | 0.33 | 0.38 | V/MHz |
| Main Linear De-emphasis Amplitude | GMED | T5A | T23 | $\begin{aligned} & \mathrm{T} 5=200 \mathrm{mVp}-\mathrm{p} \text { FM signal } \\ & (\mathrm{fm}=10 \mathrm{kHz}, \text { Center Carrier }= \\ & 12.5 \mathrm{MHz}, \mathrm{DEV}=2.0 \mathrm{MHz}) \\ & \text { Signal level of T23 } \end{aligned}$ | 481 | 535 | 589 | mVp-p |

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$ (continued)

| Parameter | Symbol | In | Out | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VIDEO FM DE-MODULATION BLOCK (DEMOD) ( $\mathrm{T} 6=0.4 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}$ ) |  |  |  |  |  |  |  |  |
| Main Linear <br> De-emphasis Characteristics(1) | GMED1 | T5A | T23 | T5 $=200 \mathrm{mVp}-\mathrm{p}$ FM signal ( $\mathrm{fm}=500 \mathrm{kHz}$, Center Carrier = $12.5 \mathrm{MHz}, \mathrm{DEV}=2.0 \mathrm{MHz}$ ). <br> Signal level of T23 versus GMRD (Ratio of GMED). | -3.5 | -1.5 | +0.5 | dB |
| Main Linear De-emphasis Characteristics(2) | GMED2 | T5A | T23 | T5 $=200 \mathrm{mVp}-\mathrm{p}$ FM signal ( $\mathrm{fm}=2 \mathrm{MHz}$, Center Carrier = $9.25 \mathrm{MHz}, \mathrm{DEV}=2.0 \mathrm{MHz}$. <br> Signal level of T23 versus GMRD (Ratio of GMED) | -6.5 | -4.5 | -2.5 | dB |

ASK BLOCK (T17 = 0.4 V )

| Current Dissipation at Standby | ICCS | T17 |  | At standby mode, measures include current to pin2,9. T17 $=0.4 \mathrm{~V}$, T15 and T20: open | 10.8 | 13.0 | 15.5 | mA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current Dissipation at Standby at MOD-AGC-OFF | $\mathrm{I}_{\mathrm{CC}} \mathrm{Sb}$ | $\begin{aligned} & \text { T17 } \\ & \text { T15 } \end{aligned}$ |  | At standby mode, measures include current to pin 2,9. $\mathrm{T} 17=0.4 \mathrm{~V}, \mathrm{~T} 15=5 \mathrm{~V} \text {, }$ <br> T20: open | 12.8 | 16.0 | 19.2 | mA |
| Current Dissipation at Standby at DEMOD-AGC-OFF | ICCSO | $\begin{aligned} & \text { T17 } \\ & \text { T15 } \\ & \text { T20 } \end{aligned}$ |  | At standby mode, measures include current to pin 2,9. $\mathrm{T} 17=0.4 \mathrm{~V}, \mathrm{~T} 15=5 \mathrm{~V}, \mathrm{~T} 20=5 \mathrm{~V}$ | 16.8 | 21.0 | 25.2 | mA |
| Standby Release <br> Time(1) <br> (FM stop $\rightarrow$ release) | SASK1 | $\begin{gathered} \text { T6 } \\ \text { T17 } \end{gathered}$ | T3 | $\mathrm{T} 6=2.0 \mathrm{VDC} \mathrm{T} 17=0 \mathrm{~V} \rightarrow 2 \mathrm{~V}$ (Standby release) Time until FM carrier is output to T3 | 0.0 | 6.0 | 12.0 | $\mu \mathrm{s}$ |
| Standby Release <br> Time(2) <br> (Video signal stop <br> $\rightarrow$ release) | SASK2 | $\begin{gathered} \text { T6 } \\ \text { T5A } \\ \text { T17 } \end{gathered}$ | T3 | $\mathrm{T} 6=0.4 \mathrm{~V}, \mathrm{~T} 5=\mathrm{DEV}=2.0 \mathrm{MHz}$ $100 \%$ white video signal of FM signal. T17 $=0 \mathrm{~V} \rightarrow 2 \mathrm{~V}$ (Standby release) <br> Time until white $100 \%$ signal is output to T3 | 2.0 | 7.0 | 12.0 | $\mu \mathrm{s}$ |
| ASK Transmitting Time "transmission" | TASK1 | $\begin{aligned} & \text { T10A } \\ & \text { T11 } \end{aligned}$ | T12 | $\text { T10A = } 1 \text { MHz, 0/2 V Pulse }$ $\mathrm{T} 11=20 \mathrm{kHz},$ <br> 0/2 V Pulse. Measure T12 signal appear time |  |  | 0.1 | ms |
| ASK Transmitting Time "Receive" | TASK2 | T16A | T13 | $\mathrm{T} 16=1 \mathrm{MHz}, 300 \mathrm{mVp}-\mathrm{p}-\mathrm{SIN}$ wave <br> Measure time T13 appear detected T16 signal |  |  | 0.1 | ms |
| ASK Transmission Setup Time | WASK | $\begin{aligned} & \text { T10A } \\ & \text { T11 } \end{aligned}$ | T12 | T10A $=1 \mathrm{MHz}, 0-2 \mathrm{~V}$-pulse T11 = $20 \mathrm{kHz}, 0-2 \mathrm{~V}$-pulse Measure T11 input interval time when T10A input |  | 10 | 100 | ms |
| ASK Minimum Detect Level | VASK | T16A | T13 | Measure T16 minimum level at T13 is normally condition | 0.2 |  | 3 | Vp-p |
| ASK Start Up Time | OASK | T16A | T13 | Measure time ASK working from Power-ON | - | 30 | 300 | ms |
| ASK Demodulation Duty Ratio | DASK | T16A | T13 | $\begin{aligned} & \mathrm{T} 16=\mathrm{T} 12 \text { output signal } \\ & (0-2 \mathrm{Vp}-\mathrm{p}) \text { Measure ASK Duty } \\ & \text { difference with } 50 \% \\ & \text { DASK }=(\text { pulse width } \mu \mathrm{s} / 50 \mu \mathrm{~s})- \\ & 50 \% \times 100 \% \end{aligned}$ | -15 | -2 | 11 | \% |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PIN ASSIGNMENT


Figure 1. Pin Assignment

## BLOCK DIAGRAM AND APPLICATION CIRCUIT EXANPLE1 MODULATION (OUTSIDE CAMERA)



Figure 2. Block Diagram and Application Circuit Exanple1 Modulation (Outside Camera)

## APPLICATION CIRCUIT EXANPLE2 DEMODULATION (INSIDE MONITOR)



Figure 3. Application Circuit Exanple2 Demodulation (Inside Monitor)

PIN FUNCTION

| Pin No. | Pin Name | FM MOD Mode (Outside Camera) | FM DEMOD Mode (Inside Monitor) | Note |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Emphasis Filter | Emphasis filter connection pin | Non connect (Hi-Z) | If you no need, this pin is open |
| 2 | $\mathrm{V}_{\mathrm{CC}} 5 \mathrm{~V}$ | $\mathrm{V}_{\text {CC }}$ for FM modulation | $\mathrm{V}_{\text {CC }}$ for FM demodulation |  |
| 3 | FM/Video Output | FM Output $\left(R_{O}=200 \Omega: 1.8 \mathrm{Vp}-\mathrm{p}\right)$ | Video Output $\left(\mathrm{R}_{\mathrm{O}}=1 \mathrm{k} \Omega: 2 \mathrm{Vp-p}\right)$ | Push-pull output |
| 4 | 4 V Regulator | FM modulate block and ASK bock supply reference voltage. | FM demodulate block and ASK bock supply reference voltage. |  |
| 5 | FM/VD Input | VD Input. <br> (Hi: over 2 V , Low: under 0.4 V ) <br> (VD DET: High) | FM Input. (Recommend Level: 100 to $620 \mathrm{mVp}-\mathrm{p}$ ) | DEMOD mode: Set 3.3 V by internal bias. ( $34 \mathrm{k} \Omega / 66 \mathrm{k} \Omega$ ) |
| 6 | MOD/DEMOD Control | Set over 2 V DC voltage. | Set under 0.4 V DC voltage. | Outside camera/Inside monitor setting. |
| 7 | TC1 (MOD)/ FMAGC Monitor Out Control | Set capacitor for TC1 | FMAGC monitor out control GND: Monitor $\mathrm{ON} / \mathrm{V}_{\mathrm{CC}}$ : Monitor OFF | Can do second inside monitor addition |
| 8 | TC2(DEMOD)/ FMAGC Monitor Output | Set capacitor for TC2 | FMAGC monitor output | Can do second inside monitor addition |
| 9 | ASK-V $\mathrm{CCO}^{5 \mathrm{~V}}$ | $\mathrm{V}_{\text {CC }}$ for ASK | $\leftarrow$ |  |
| 10 | ASK CAR IN | ASK carrier Input. (Recommend below $3 \mathrm{Vp}-\mathrm{p}$ ) | $\leftarrow$ | 2.1 V by internal bias. (50 k $)^{\text {) }}$ |
| 11 | ASK DATA IN | ASK Data Input. <br> (Hi: more than 2 V , <br> Lo: below 0.4 V ) | $\leftarrow$ |  |

PIN FUNCTION (continued)

| Pin No. | Pin Name | FM MOD Mode (Outside Camera) | FM DEMOD Mode (Inside Monitor) | Note |
| :---: | :---: | :---: | :---: | :---: |
| 12 | ASK TX Output | ASK modulated signal Output | $\leftarrow$ | Push-pull output |
| 13 | ASK RX Output | ASK Demodulated Output | $\leftarrow$ | Open collector output ASK carrier detect = Lo |
| 14 | ASK DET Filter | ASK Detector filter | $\leftarrow$ |  |
| 15 | $\begin{aligned} & \text { ASK AGC Filter/ } \\ & \text { AGC OFF } \end{aligned}$ | AGC filter for ASK. (When AGC operate voltage is 0 V to 3 V , AGC stop when you add over 4.5 V.) | $\leftarrow$ |  |
| 16 | ASK RX Input | ASK Demodulate Input | $\leftarrow$ | 3.3 V by internal bias. <br> ( $34 \mathrm{k} \Omega / 66 \mathrm{k} \Omega$ ) |
| 17 | Standby Control | FM blocks standby control. (FM block operate: over 2 V , FM block standby: under 0.4 V ) | $\leftarrow$ |  |
| 18 | DOC-OUT/ 2nd-Call Input | 2ND-Call input, 2ND-Call: Low (High: over 2 V , Low: under 0.4 V ) | DOC output (When DO-DET, output is Low) | DEMOD mode: Open collector output. |
| 19 | B-GND | Circuit GND | $\leftarrow$ |  |
| 20 | FM AGC Filter | Emphasis monitor output | FM AGC control filter (AGC-ON: 0 to 3 V DC, AGC-OFF: 4.5 to 5 V by external DC voltage.) | MOD mode: Don't connect capacitor |
| 21 | De-emphasis Filter | Non connect (Hi-Z) | De-emphasis filter connection pin | If you don't need, this pin is open |
| 22 | A-GND | Circuit GND | $\leftarrow$ |  |
| 23 | De-emphasis Output/ V-2V Select | DFF for V-diff control <br> (ON: over 2 V , OFF: under 0.4 V ) | DE-emphasis output | MOD mode; <br> VD diff. Count select 0 V : <br> VD through 2 V: VD 1/2 diff |
| 24 | Video Input | Video signal input. (from outside CCD camera: $1 \mathrm{Vp}-\mathrm{p}$ ) | Video signal input. (from de-emphasis block: $0.5 \mathrm{Vp}-\mathrm{p}$ ) | MOD mode: Maximum video input level is $1.5 \mathrm{Vp}-\mathrm{p}$. |

PIN DESCRIPTION

| Pin No. | Pin Name | Description | Equivalent Circuit |
| :---: | :---: | :---: | :---: |
| 1 | Emphasis Filter | Main Emphasis filter pin. <br> Before FM Modulation, make emphasis characteristic at video signal. <br> Emphasis time constant must be matching at de-emphasis time constant. <br> (If you don't need the emphasis, this pin is open.) |  |
| 2 | $\mathrm{V}_{\mathrm{CC}} 5 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{CC}}$ pin. Supply voltage is 5 V DC. Please connect de-coupling capacitor. |  |
| 3 | FM/Video OUT | Push-Pull output pin. <br> MOD mode: FM carrier output. <br> (1.8 Vp-p: Rout $=200 \Omega$ ) <br> DEMOD mode: Video signal output. $(2.0 \mathrm{Vp}-\mathrm{p}: \text { Rout }=1 \mathrm{k} \Omega)$ | MOD DEMOD |
| 4 | Regulator Filter | Internal regulator filter pin. Please connect $0.1 \mu \mathrm{~F}(\mathrm{C} 1)$. |  |
| 5 | FM/VD Input | DEMOD mode: FM signal input. <br> Internal DC bias is 3.3 V . Please use capacitor (C1) coupling. <br> MOD mode: VD signal input. Please input <br> VD signal directory. <br> Please consider input impedance. |  |
| 6 | MOD/DEMOD Control | MOD mode/DEMOD mode setting pin. MOD mode: Please set over 2 V DC voltage. (2 to 5 V ). <br> DEMOD mode: Please set under 0.4 V DC voltage. ( 0 to 0.4 V ). |  |

PIN DESCRIPTION (continued)

| Pin No. | Pin Name | Description | Equivalent Circuit |
| :---: | :---: | :---: | :---: |
| 7 | TC1(MOD)/ FMAGC Monitor Control | MOD mode: TC1 filter pin. Please connect C1. <br> DEMOD mode: FM-AGC monitor on/off control. <br> GND: AGC-monitor ON <br> VCC: AGC-monitor OFF |  |
| 8 | TC2(DEMOD)/ FMAGC Monitor Output | MOD mode: TC2 filter pin. Please connect C1. <br> DEMOD mode: FM-AGC-monitor output |  |
| 9 | ASK-V $\mathrm{CCO}^{5 \mathrm{~V}}$ | ASK block VCC. Please supply DC 5 V with use capacitor for de-coupling. |  |
| 10 | ASK CAR IN | ASK carrier input Pin. Please connect with capacitor, 2.1 V by internal biased. |  |
| 11 | ASK DATA IN | ASK data input pin. <br> L level is lower than 0.4 V <br> H level is more than 2 V |  |
| 12 | ASK TX Output | ASK output pin. Push-pull type output. |  |
| 13 | ASK RX Output | ASK detect output. Open corrector type output. |  |

PIN DESCRIPTION (continued)

| Pin No. | Pin Name | Description | Equivalent Circuit |
| :---: | :---: | :---: | :---: |
| 14 | ASK RX Filter | ASK detect filter. Connect capacitor for reject of ASK AC component. |  |
| 15 | ASK AGC Filter/ AGC OFF | AGC filter pin for ASK. Please connect pull-up resistance to this pin, and do more than 4.5 V at voltage of this pin. |  |
| 16 | ASK RX Input | ASK input pin. <br> Please connect with capacitor, 3.3 V by internal biased. |  |
| 17 | Standby Control | Standby control pin. <br> FM block standby: under 0.4 V DC voltage. ( 0 to 0.4 V ) <br> FM block operate: over 2 V DC voltage. $\text { (2 to } 5 \mathrm{~V} \text { ) }$ |  |
| 18 | DOC-OUT/ 2nd-Call Input | DEMOD mode: Drop-out output pin. <br> This pin is open collector output, so please connect pull up resistor. <br> MOD mode: 2ND-CALL input. <br> 2ND-CALL input: under 0.4 V DC voltage. <br> ( 0 to 0.4 V ) <br> Normal: over 2 V DC voltage. (2 to 5 V ) |  |
| 19 | B-GND | Circuit GND |  |
| 20 | FM AGC Filter | MOD mode: Emphasis monitor pin. DEMOD mode: FM AGC filter pin. <br> If FM AGC no need (= AGC Off), <br> Please set pin 12 voltage over 4.5 V DC voltage. ( 4.5 to 5 V ) |  |

PIN DESCRIPTION (continued)

| Pin No. | Pin Name | Description | Equivalent Circuit |
| :---: | :---: | :---: | :---: |
| 21 | De-emphasis Filter | DEMOD mode: De-emphasis filter pin. De-emphasis time constant must be matching at emphasis time constant. <br> (If you don't need the emphasis, this pin is open.) |  |
| 22 | A-GND | Circuit GND |  |
| 23 | De-emphasis Output/V-2V Select | DEMOD mode: Video signal output after Deemphasis. <br> Output level is $0.5 \mathrm{Vp}-\mathrm{p}$. <br> Connect capacitor to clamp input (pin 16). <br> MOD mode: DFF control pin. DFF is ON at over 2 V DC voltage. (2 to 5 V ) |  |
| 24 | Video Input | MOD mode: Video signal input pin (from camera). Input level is $1 \mathrm{Vp}-\mathrm{p}$. <br> DEMOD mode: Video signal input pin (from de-emphasis). Input level is $0.5 \mathrm{Vp}-\mathrm{p}$. |  |

## LA72912V

## TEST CIRCUIT



Figure 4. Test Circuit


SSOP24 (275mil)
CASE 565AQ
ISSUE A
DATE 25 OCT 2013


SOLDERING FOOTPRINT*


NOTE: The measurements are not to guarantee but for reference only.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

\section*{GENERIC MARKING DIAGRAM* <br> 

## XXXXX = Specific Device Code

$\mathrm{Y}=$ Year
M = Month
DDD = Additional Traceability Data
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " $\quad$ ", may or may not be present.

| DOCUMENT NUMBER: | 98AON66068E | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SSOP24 (275MIL) | PAGE 1 OF 1 |

[^0] rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Modulator/Demodulator category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LC72722PM-TLM-E HMC495LP3TR LT5571EUF\#PBF LT5528EUF\#PBF LT5502EGN\#PBF THAT1510S08-U CMX589AD5 ADRF6821ACPZ AD630ADZ AD630ARZ AD630JNZ AD630KNZ AD8346ARUZ-REEL7 AD8339ACPZ AD8345ARE AD8345AREZ AD8345AREZ-RL7 AD8347ARUZ AD8347ARUZ-REEL7 AD8348ARUZ AD8349AREZ AD8349AREZ-RL7 ADL5371ACPZ-R7 ADL5387ACPZ-WP ADL5387ACPZ-R7 ADL5372ACPZ-R7 ADL5373ACPZ-R7 ADA2200ARUZ-REEL7 AD8346ARUZ ADL5380EVALZ ADL5382ACPZ-R7 AD630ARZ-RL ADL5375-15ACPZ-R7 ADL5380ACPZ-R7 AD8333ACPZ-WP AD8341ACPZ-REEL7 ADRF6703ACPZ-R7 ADRF6750ACPZ-R7 ADRF6806ACPZ-R7 HMC1097LP4E HMC630LP3ETR HMC500LP3ETR HMC495LP3ETR HMC500LP3E HMC630LP3E HMC631LP3E HMC795LP5E LT5516EUF LTC5598IUF MC1496DR2G


[^0]:    ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

