LB11946

Monolithic Digital IC
PWM Current Control Stepping Motor Driver

ON Semiconductor ${ }^{\text {® }}$
http://onsemi.com

Overview

The LB11946 is a stepping motor driver IC that implements PWM current control bipolar drive with a fixed off time. This IC features 15 current setting levels using a fixed VREF voltage and support for micro-stepping drive from 1-2 phase excitation drive to 4W1-2 phase excitation drive. This device is optimal for driving stepping motors such as those used for carriage drive and paper feed in printers.

Features

- PWM current control (with a fixed off time)
- Logic input serial-parallel converter (allows 1-2, W1-2, 2W1-2, and 4W1-2 phase excitation drive)
- Current attenuation switching function (with slow decay, fast decay, and mixed decay modes)
- Built-in upper and lower side diodes
- Simultaneous on state prevention function (through current prevention)
- Noise canceller function
- Thermal shutdown circuit
- Shutoff on low logic system voltage circuit
- Low-power mode control pin

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Motor supply voltage	$V_{B B}$		50	V
Peak output current	Io peak	tw $\leq 20 \mu \mathrm{~S}$	1.2	A
Continuous output current	Io max		1.0	A
Logic system supply voltage	V_{CC}		7.0	V
Logic input voltage range	$\mathrm{V}_{\text {IN }}$		-0.3 to $V_{\text {CC }}$	V
Emitter output voltage	VE	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ specifications	1.0	V
		$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}$ specifications	0.5	V
Allowable power dissipation	Pd max	Independent IC	3.0	W
Operating temperature	Topr		-25 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

LB11946
Recommended Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Motor supply voltage	V_{BB}		10 to 45	V
Logic system supply voltage	V_{CC}	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ specifications	4.5 to 5.5	V
		$\mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ specifications	3.0 to 3.6	V
Reference voltage		VREF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ specifications	0.0 to 3.0
		$\mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ specifications	V	

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=42 \mathrm{~V}, \mathrm{VREF}=1.52 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Output Block						
Output stage supply current	${ }^{\text {I BB ON }}$		0.9	1.3	1.7	mA
	${ }^{\text {I BB OFF }}$		0.52	0.7	1.05	mA
Output saturation voltage	V_{O} (sat) 1	$\mathrm{I}_{\mathrm{O}}=+0.5 \mathrm{~A}$ (sink)		1.1	1.4	V
	V_{O} (sat) 2	$\mathrm{I}^{\mathrm{O}}=+1.0 \mathrm{~A}$ (sink)		1.4	1.7	V
	V_{O} (sat) 3	$\mathrm{I}^{\mathrm{O}}=-0.5 \mathrm{~A}$ (source)		1.9	2.2	V
	V_{O} (sat) 4	$\mathrm{I}^{\mathrm{O}}=-1.0 \mathrm{~A}$ (source)		2.2	2.5	V
Output leakage current	$\mathrm{l}^{1} 1$ (leak)	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{BB}}$ (sink)			50	$\mu \mathrm{A}$
	$\mathrm{l}^{\text {O }}$ (leak)	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ (source)	-50			$\mu \mathrm{A}$
Output sustain voltage	$\mathrm{V}_{\text {SUS }}$	$\mathrm{L}=15 \mathrm{mH}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}$, Design guarantee *	45			V
Logic Block						
Logic system supply current	${ }^{\text {I CC ON }}$	$\mathrm{D} 0=1, \mathrm{D} 1=1, \mathrm{D} 2=1, \mathrm{D} 3=1$ When these data values are set	24	35	46	mA
	${ }^{\text {I CC OFF1 }}$	D0 = 0, D1 = 0, D2 = 0, D3 = 0	22	32	42	mA
	ICC OFF2	ST = LOW		0.05	0.1	mA
Input voltage	$\mathrm{V}_{\text {IH }}$		2			V
	$\mathrm{V}_{\text {IL }}$				0.8	V
Input current	$\mathrm{IIH}^{\text {I }}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$			35	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	6			$\mu \mathrm{A}$
Sense voltages	VE	$\mathrm{D} 0=1, \mathrm{D} 1=1, \mathrm{D} 2=1, \mathrm{D} 3=1$ When these data values are set	0.470	0.50	0.525	V
		D0 = 1, D1 = 1, D2 = 1, D3 = 0	0.445	0.48	0.505	V
		D0 = 1, D1 = 1, D2 = 0, D3 = 1	0.425	0.46	0.485	V
		D0 = 1, D1 = 1, D2 = 0, D3 = 0	0.410	0.43	0.465	V
		D0 = 1, D1 = 0, D2 = 1, D3 = 1	0.385	0.41	0.435	V
		$\mathrm{D} 0=1, \mathrm{D} 1=0, \mathrm{D} 2=1, \mathrm{D} 3=0$	0.365	0.39	0.415	V
		D0 = 1, D1 = 0, D2 = 0, D3 = 1	0.345	0.37	0.385	V
		D0 = 1, D1 = 0, D2 = 0, D3 =	0.325	0.35	0.365	V
		$\mathrm{D} 0=0, \mathrm{D} 1=1, \mathrm{D} 2=1, \mathrm{D} 3=1$	0.280	0.30	0.325	V
		D0 = 0, D1 = 1, D2 = 1, D3 = 0	0.240	0.26	0.285	V
		D0 = 0, D1 = 1, D2 = 0, D3 = 1	0.195	0.22	0.235	V
		D0 = 0, D1 = 1, D2 = 0, D3 =	0.155	0.17	0.190	V
		D0 $=0, \mathrm{D} 1=0, \mathrm{D} 2=1, \mathrm{D} 3=1$	0.115	0.13	0.145	V
		D0 = 0, D1 = 0, D2 = 1, D3 =	0.075	0.09	0.100	V
Reference current	$\mathrm{I}_{\text {REF }}$	$\mathrm{VREF}=1.5 \mathrm{~V}$	-0.5			$\mu \mathrm{A}$
CR pin current	${ }^{\text {I CR }}$	$\mathrm{CR}=1.0 \mathrm{~V}$	-1.6	-1.2	-0.8	mA
MD pin current	I_{MD}	$\mathrm{MD}=1.0 \mathrm{~V}, \mathrm{CR}=4.0 \mathrm{~V}$	-5.0			$\mu \mathrm{A}$
Logic system on voltage	$\mathrm{V}_{\text {LSD }} \mathrm{ON}$		2.6	2.8	3.0	V
Logic system off voltage	$\mathrm{V}_{\text {LSD }}$ OFF		2.45	2.65	2.85	V
LVSD hysteresis	$\mathrm{V}_{\text {LHIS }}$		0.03	0.15	0.35	V
Thermal shutdown temperature	Ts	Design guarantee *		170		${ }^{\circ} \mathrm{C}$

*Design guarantee: Design guarantee value, Do not measurement.

LB11946
AC Electrical Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Clock frequency	Fclk			200	550	kHz
Data setup time	TDS		0.9	2.5		$\mu \mathrm{S}$
Data hold time	TDH		0.9	2.5		$\mu \mathrm{S}$
Minimum clock high-level pulse width	TSCH		0.9	2.5		$\mu \mathrm{S}$
Minimum clock low-level pulse width	TSCL		0.9	2.5		$\mu \mathrm{S}$
SET pin stipulated time	Tlat		0.9	2.5		$\mu \mathrm{S}$
SET pin signal pulse width	Tlatw		1.9	5.0		$\mu \mathrm{S}$

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=42 \mathrm{~V}, \mathrm{VREF}=1.0 \mathrm{~V}$
(When measuring the sense voltage: VREF = 1.03V)

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Output Block						
Output stage supply current	${ }^{\text {IBB ON }}$		0.9	1.3	1.7	mA
	I_{BB} OFF		0.52	0.7	1.05	mA
Output saturation voltage	V_{O} (sat) 1	$\mathrm{I}^{\prime} \mathrm{O}=+0.5 \mathrm{~A}$ (sink)		1.2	1.5	V
	V_{O} (sat) 2	$\mathrm{I}^{\mathrm{O}}=+1.0 \mathrm{~A}$ (sink)		1.5	1.8	V
	$\mathrm{V}_{\text {O}}$ (sat) 3	$\mathrm{I}^{\mathrm{O}}=-0.5 \mathrm{~A}$ (source)		2.0	2.3	V
	$\mathrm{V}_{\text {O}}$ (sat) 4	$\mathrm{I}^{\mathrm{O}}=-1.0 \mathrm{~A}$ (source)		2.3	2.6	V
Output leakage current	${ }^{1} \mathrm{O}^{1}$ (leak)	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{BB}}$ (sink)			50	$\mu \mathrm{A}$
	${ }^{1} \mathrm{O}^{2}$ (leak)	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ (source)	-50			$\mu \mathrm{A}$
Output sustain voltage	$\mathrm{V}_{\text {SUS }}$	$\mathrm{L}=15 \mathrm{mH} \mathrm{I}_{\mathrm{O}}-1.5 \mathrm{~A}$, Design guarantee *	45			V
Logic Block						
Logic system supply current	${ }^{\text {I CC }} \mathrm{ON}$	$D 0=1, D 1=1, D 2=1, D 3=1$ When these data values are set	21	30	39	mA
	${ }^{\text {ICC OFF1 }}$	D0 = 0, D1 = 0, D2 = 0, D3 = 0	19	28	36.5	mA
	${ }^{\text {ICC OFF2 }}$	$\mathrm{ST}=0.8 \mathrm{~V}$		0.03	0.1	mA
Input voltage	$\mathrm{V}_{\text {IH }}$		2			V
	$\mathrm{V}_{\text {IL }}$				0.8	V
Input current	$\mathrm{IIH}^{\text {I }}$	$\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$			35	$\mu \mathrm{A}$
	IIL	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	6			$\mu \mathrm{A}$
Sense voltages	VE	$\mathrm{D} 0=1, \mathrm{D} 1=1, \mathrm{D} 2=1, \mathrm{D} 3=1 \mathrm{VREF}=1.03 \mathrm{~V}$	0.303	0.330	0.356	V
		$\mathrm{D} 0=1, \mathrm{D} 1=1, \mathrm{D} 2=1, \mathrm{D} 3=0 \mathrm{VREF}=1.03 \mathrm{~V}$	0.290	0.315	0.341	V
		$\mathrm{D} 0=1, \mathrm{D} 1=1, \mathrm{D} 2=0, \mathrm{D} 3=1 \mathrm{VREF}=1.03 \mathrm{~V}$	0.276	0.300	0.324	V
		$\mathrm{D} 0=1, \mathrm{D} 1=1, \mathrm{D} 2=0, \mathrm{D} 3=0 \mathrm{VREF}=1.03 \mathrm{~V}$	0.263	0.286	0.309	V
		$\mathrm{D} 0=1, \mathrm{D} 1=0, \mathrm{D} 2=1, \mathrm{D} 3=1 \mathrm{VREF}=1.03 \mathrm{~V}$	0.250	0.272	0.294	V
		$\mathrm{D} 0=1, \mathrm{D} 1=0, \mathrm{D} 2=1, \mathrm{D} 3=0 \mathrm{VREF}=1.03 \mathrm{~V}$	0.236	0.257	0.278	V
		$\mathrm{D} 0=1, \mathrm{D} 1=0, \mathrm{D} 2=0, \mathrm{D} 3=1 \mathrm{VREF}=1.03 \mathrm{~V}$	0.223	0.243	0.263	V
		$\mathrm{D} 0=1, \mathrm{D} 1=0, \mathrm{D} 2=0, \mathrm{D} 3=0 \mathrm{VREF}=1.03 \mathrm{~V}$	0.209	0.228	0.247	V
		$\mathrm{D} 0=0, \mathrm{D} 1=1, \mathrm{D} 2=1, \mathrm{D} 3=1 \mathrm{VREF}=1.03 \mathrm{~V}$	0.183	0.200	0.217	V
		$\mathrm{D} 0=0, \mathrm{D} 1=1, \mathrm{D} 2=1, \mathrm{D} 3=0 \mathrm{VREF}=1.03 \mathrm{~V}$	0.155	0.170	0.185	V
		$\mathrm{D} 0=0, \mathrm{D} 1=1, \mathrm{D} 2=0, \mathrm{D} 3=1 \mathrm{VREF}=1.03 \mathrm{~V}$	0.128	0.143	0.158	V
		$\mathrm{D} 0=0, \mathrm{D} 1=1, \mathrm{D} 2=0, \mathrm{D} 3=0 \mathrm{VREF}=1.03 \mathrm{~V}$	0.102	0.114	0.126	V
		$\mathrm{D} 0=0, \mathrm{D} 1=0, \mathrm{D} 2=1, \mathrm{D} 3=1 \mathrm{VREF}=1.03 \mathrm{~V}$	0.074	0.085	0.096	V
		$\mathrm{D} 0=0, \mathrm{D} 1=0, \mathrm{D} 2=1, \mathrm{D} 3=0 \mathrm{VREF}=1.03 \mathrm{~V}$	0.047	0.057	0.067	V
Reference current	${ }^{\text {I REF }}$	VREF $=1.0 \mathrm{~V}$	-0.5			$\mu \mathrm{A}$
CR pin current	${ }^{\text {ICR }}$	$\mathrm{CR}=1.0 \mathrm{~V}$	-0.91	-0.7	-0.49	mA
MD pin current	${ }^{\text {MD }}$	$\mathrm{MD}=1.0 \mathrm{~V}, \mathrm{CR}=4.0 \mathrm{~V}$	-5.0			$\mu \mathrm{A}$
LVSD voltage	$\mathrm{V}_{\text {LSD }} \mathrm{ON}$		2.6	2.8	3.0	V
Logic system off voltage	$\mathrm{V}_{\text {LSD }}$ OFF		2.45	2.65	2.85	V
LVSD hysteresis	$\mathrm{V}_{\text {LHIS }}$		0.03	0.15	0.35	V
Thermal shutdown temperature	Ts	Design guarantee *		170		${ }^{\circ} \mathrm{C}$

[^0]AC Electrical Characteristics at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Clock frequency	Fclk			200	550	kHz
Data setup time	TDS		0.9	2.5		$\mu \mathrm{S}$
Data hold time	TDH		0.9	2.5		$\mu \mathrm{S}$
Minimum clock high-level pulse width	TSCH		0.9	2.5		$\mu \mathrm{S}$
Minimum clock low-level pulse width	TSCL		0.9	2.5		$\mu \mathrm{S}$
SET pin stipulated time	Tlat		0.9	2.5		$\mu \mathrm{S}$
SET pin signal pulse width	Tlatw		1.9	5.0		$\mu \mathrm{S}$

Package Dimensions

unit: mm (typ)
3147C

Pin Assignment

Note: The D-GNDA and D-GNDB pins are the anode sides of the lower side diodes

Timing Chart

Serially Transferred Data Definition

No.	IA4	IA3	IA2	IA1	DE1	PH1	IB4	IB3	IB2	IB1	DE2	PH2	Output mode				$\begin{aligned} & \text { I/O } \\ & \text { ratio } \end{aligned}$	$\begin{gathered} \text { DEC } \\ \text { MODE } \\ \hline \end{gathered}$
	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	$\mathrm{OUT}_{\mathrm{A}}$	OUT \bar{A}	OUTB $^{\text {B }}$	OUT \bar{B}		
0	1	1	1	1	1	1	1	1	1	1	1	1	H	L	H	L	100\%	SLOW
1	1	1	1	0	1	1	1	1	1	0	1	1	H	L	H	L	96	SLOW
2	1	1	0	1	1	1	1	1	0	1	1	1	H	L	H	L	91	SLOW
3	1	1	0	0	1	1	1	1	0	0	1	1	H	L	H	L	87	SLOW
4	1	0	1	1	1	1	1	0	1	1	1	1	H	L	H	L	83	SLOW
5	1	0	1	0	1	1	1	0	1	0	1	1	H	L	H	L	78	SLOW
6	1	0	0	1	1	1	1	0	0	1	1	1	H	L	H	L	74	SLOW
7	1	0	0	0	1	1	1	0	0	0	1	1	H	L	H	L	70	SLOW
8	0	1	1	1	1	1	0	1	1	1	1	1	H	L	H	L	61	SLOW
9	0	1	1	0	1	1	0	1	1	0	1	1	H	L	H	L	52	SLOW
10	0	1	0	1	1	1	0	1	0	1	1	1	H	L	H	L	44	SLOW
11	0	1	0	0	1	1	0	1	0	0	1	1	H	L	H	L	35	SLOW
12	0	0	1	1	1	1	0	0	1	1	1	1	H	L	H	L	26	SLOW
13	0	0	1	0	1	1	0	0	1	0	1	1	H	L	H	L	17	SLOW
14	1	1	1	1	0	0	1	1	1	1	0	0	L	H	L	H	100	FAST
15	1	1	1	0	0	0	1	1	1	0	0	0	L	H	L	H	96	FAST
16	1	1	0	1	0	0	1	1	0	1	0	0	L	H	L	H	91	FAST
17	1	1	0	0	0	0	1	1	0	0	0	0	L	H	L	H	87	FAST
18	1	0	1	1	0	0	1	0	1	1	0	0	L	H	L	H	83	FAST
19	1	0	1	0	0	0	1	0	1	0	0	0	L	H	L	H	78	FAST
20	1	0	0	1	0	0	1	0	0	1	0	0	L	H	L	H	74	FAST
21	1	0	0	0	0	0	1	0	0	0	0	0	L	H	L	H	70	FAST
22	0	1	1	1	0	0	0	1	1	1	0	0	L	H	L	H	61	FAST
23	0	1	1	0	0	0	0	1	1	0	0	0	L	H	L	H	52	FAST
24	0	1	0	1	0	0	0	1	0	1	0	0	L	H	L	H	44	FAST
25	0	1	0	0	0	0	0	1	0	0	0	0	L	H	L	H	35	FAST
26	0	0	1	1	0	0	0	0	1	1	0	0	L	H	L	H	26	FAST
27	0	0	1	0	0	0	0	0	1	0	0	0	L	H	L	H	17	FAST
28	0	0	0	0	*	*	0	0	0	0	*	*	OFF	OFF	OFF	OFF	0	-

Note *: Either 0 or 1.
Note *1: In mixed decay mode, set D4 and D10 to 0 and set the MD pin to a level in the range 1.5 to 4.0 V .

Current Settings Truth Table * Items in parentheses are defined by the serial data.

IA4 (D0)	IA3 (D1)	$\begin{aligned} & \text { IA2 } \\ & \text { (D2) } \end{aligned}$	IA1 (D3)	Set current lout	Current ratio (\%)
1	1	1	1	11.5/11.5 \times VREF/3.04RE $=$ lout	100
1	1	1	0	11.0/11.5 \times VREF/3.04RE $=$ lout	95.65
1	1	0	1	10.5/11.5 \times VREF/3.04RE $=$ lout	91.30
1	1	0	0	10.0/11.5 \times VREF/3.04RE $=$ lout	86.95
1	0	1	1	$9.5 / 11.5 \times$ VREF/3.04RE $=$ lout	82.61
1	0	1	0	9.0/11.5 \times VREF/3.04RE $=$ lout	78.26
1	0	0	1	8.5/11.5 \times VREF/3.04RE $=$ lout	73.91
1	0	0	0	8.0/11.5 \times VREF/3.04RE $=$ lout	69.56
0	1	1	1	7.0/11.5 \times VREF/3.04RE $=$ lout	60.87
0	1	1	0	6.0/11.5 \times VREF/3.04RE $=$ lout	52.17
0	1	0	1	$5.0 / 11.5 \times$ VREF/3.04RE $=$ lout	43.48
0	1	0	0	$4.0 / 11.5 \times \mathrm{VREF} / 3.04 \mathrm{RE}=$ lout	34.78
0	0	1	1	3.0/11.5 \times VREF/3.04RE $=$ lout	26.08
0	0	1	0	2.0/11.5 \times Vref/3.04RE $=$ lout	17.39

Note: The current ratios shown are calculated values.

Block Diagram

Sample Application Circuit at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Sample Application Circuit at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

SLOW DECAY Current Path

The reregenerative current at upper-side transistor switching operates

Motor current I
$\mathrm{I}=\mathrm{VE} / \operatorname{Re}$

Fig. 1

FAST DECAY Current Path

$-\cdots-\cdots$ Current path at output ON
$-\cdots-\cdots-\cdots$ Current path at Fast DECAY

Fig. 2

Switching Time Chart at PWM operation

OR pin

MIX DECAY logic setting

serial transmission data (D4, D10) = Low
MD pin: 1.6 V to 3.0 V at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ specification.
1.2 V to 2.5 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ specification.
t on: Output ON time
t off: Output OFF time
tm: FAST DECAY time at MIX DECAY mode tn: Noise cancel time

The following operation by comparison between CR voltage and MD pin voltage in turning off time.
CR voltage > MD pin voltage: both sides chopping
CR voltage < MD pin voltage: upper side chopping

Attached Documents

1. Switching Off Time and Noise Canceller Time Calculations Notes on the CR Pin Setting (switching off time and noise canceller time)

The noise canceller time (Tn) and the switching off time (Toff) are set using the following formulas.
(1) When VCC is 5 V

Noise canceller time (Tn)
$\mathrm{Tn} \approx \mathrm{C} \times \mathrm{R} \times \ln \{(1.5-\mathrm{RI}) /(4.0-\mathrm{RI})\}[\mathrm{s}]$
CR pin charge current: 1.25 mA
Switching off time (Toff)
Toff $\approx-\mathrm{C} \times \mathrm{R} \times \ln (1.5 / 4.8)[\mathrm{s}]$
Component value ranges
R: $5.6 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$
C: 470pF to 2000 pF
(2) When V_{CC} is 3.3 V

Noise canceller time (Tn)
$\mathrm{Tn} \approx \mathrm{C} \times \mathrm{R} \times \ln \{(1.06-\mathrm{RI}) /(2.66-\mathrm{RI})\}[\mathrm{s}]$
CR pin charge current: 0.7 mA
Switching off time (Toff)
Toff $\approx-\mathrm{C} \times \mathrm{R} \times \ln (1.06 / 3.1)[\mathrm{s}]$

CR Pin Internal Circuit Structure

2. Notes on the MD Pin
(1) If slow decay mode is set up by setting the D4 and D10 bits in the input serial data to 1 , the MD pin must be shorted to ground.
(2) If fast decay mode is set up by setting the D4 and D10 bits in the input serial data to 0 , mixed decay mode can be set with the MD pin.
When the $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ specifications are used the setting voltage range for mixed decay mode is 1.6 to 3.9 V .
When the $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}$ specifications are used the setting voltage range for mixed decay mode is 1.2 to 2.5 V .
If mixed decay mode will not be used with the fast decay mode setting, either:
(a) Short the MD pin to ground to select fast decay mode, or
(b) Short the MD pin to V_{CC} to select slow decay mode.

Usage Notes

(1) Notes on the VREF pin

Since the VREF pin inputs the reference voltage used to set the current, applications must be designed so that noise does not occur at this pin.
(2) Notes on the ground pins

Since this IC switches large currents, care is required with respect to the ground pins.
The PCB pattern in sections where large currents flow must be designed with low impedances and must be kept separate from the small-signal system.
In particular, the ground terminals of the E1 and E2 pin sense resistors (Re) and the external Schottky barrier diode ground terminals must be located as close as possible to the IC ground. The capacitors between V_{CC} and ground and between $V_{B B}$ and ground must be as close as possible to the corresponding $V_{C C}$ and $V_{B B}$ pin in the pattern.
(3) Power on sequence

When turning the power systems on
$\mathrm{V}_{\mathrm{CC}} \rightarrow$ logic level inputs (CLK, DATA, SET, and ST) \rightarrow VREF $\rightarrow \mathrm{V}_{\mathrm{BB}}$
When turning the power systems off
VBB \rightarrow VREF logic level inputs (CLK, DATA, SET, and ST) $\rightarrow \mathrm{V}_{\mathrm{CC}}$
Note that if the power supply for the logic level inputs is on when the $\mathrm{V}_{\text {CC }}$ power supply is off, a bias with an unstable state will be applied due to the protection diodes at the VCC pins, and this can cause incorrect operation.

[^1]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Motor/Motion/Ignition Controllers \& Drivers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 MSVGW54-14-5 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E 26700 LV8281VR-TLM-H BA5839FP-E2 IRAM2361067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B STK672-630CN-E TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVB54 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 MSVTA120 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW45-14-5 MSVGW54-14-4 STK984-091A-E MP6519GQ-Z LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 NCP81382MNTXG TDA21801

LB11851FA-BH NCV70627DQ001R2G

[^0]: *Design guarantee: Design guarantee value, Do not measurement

[^1]: ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

