LB1838M
Monolithic Digital IC
Low-Voltage, Low-Saturation Bidirectional Motor Driver

ON Semiconductor ${ }^{\text {® }}$
http://onsemi.com

Overview

The LB1838M is a low-saturation two-channel bidirectional motor driver IC for use in low-voltage applications.
The LB1838M is a bipolar stepper-motor driver IC that is ideal for use in printers, cameras and other portable devices.

Functions

- Low voltage operation (2.5 V min)
- Low saturation voltage (upper transistor + lower transistor residual voltage: 0.40 V at 400 mA)
- Built-in through-current prevention circuit
- Separate logic power supply and motor power supply
- Built-in spark killer diodes
- Built-in thermal shutdown circuit
- Compact package: MFP14S

Specifications
Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\text {CC }}$ max		-0.3 to +10.5	V
	V_{S} max		-0.3 to +10.5	V
Output applied voltage	$\mathrm{V}_{\text {OUT }}$		$\mathrm{V}_{\mathrm{S}}+\mathrm{V}_{\mathrm{SF}}$	V
Input applied voltage	$\mathrm{V}_{\text {IN }}$		-0.3 to +10	V
Ground pin flow-out current	$\mathrm{I}_{\text {GND }}$	Per channel	1.0	A
Allowable power dissipation	Pd max	Independent IC	550	mW
		Mounted on a specified board *	800	mW
Operating temperature	Topr		-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

* Specified board: $20 \mathrm{~mm} \times 30 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, glass epoxy board.

LB1838M
Allowable Operating Ranges at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V_{CC}		2.5 to 9.0	VV
	V_{S}		1.8 to 9.0	V
Input high-level voltage	V_{IH}		1.8 to 9.0	V
Input Low-level voltage	V_{IL}		-0.3 to +0.7	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Current drain	${ }^{1} \mathrm{CCO}$	ENA1,2 $=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }} 1=3 \mathrm{~V}$ or 0 V		0.1	10	$\mu \mathrm{A}$
	${ }^{1} \mathrm{CC}{ }^{1}$	ENA1 $=3 \mathrm{~V}, \mathrm{~V}_{\text {IN }} 1=3 \mathrm{~V}$ or 0 V		12	18	mA
Output saturation voltage	$\mathrm{V}_{\text {OUT }}{ }^{1}$	ENA $=3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3 \mathrm{~V}$ or 0 V , $\mathrm{IOUT}=200 \mathrm{~mA}$		0.2	0.28	V
	$\mathrm{V}_{\text {OUT }}{ }^{2}$	ENA $=3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3 \mathrm{~V}$ or $0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=400 \mathrm{~mA}$		0.4	0.6	V
Input current	In	$\mathrm{V}_{\text {CC }}=6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=6 \mathrm{~V}$			200	$\mu \mathrm{A}$
	IENA	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{ENA}=6 \mathrm{~V}$			200	$\mu \mathrm{A}$
Output sustaining voltage	V_{O} (SUS)	$\mathrm{I}_{\text {OUT }}=400 \mathrm{~mA}$	9			V
Spark killer diode						
Reverse current	Is(leak)	$\mathrm{V}_{C C}{ }^{1,} \mathrm{~V}_{S}=7 \mathrm{~V}$			30	$\mu \mathrm{A}$
Forward voltage	$\mathrm{V}_{\text {SF }}$	$\mathrm{I}_{\text {OUT }}=400 \mathrm{~mA}$			1.7	V

Package Dimensions

unit : mm (typ)

3111A

MFP14S(225mil)

Pin Assignment

Note: Both GND pins should be connected to ground.

Block Diagram

Note: As long as the voltages applied to $\mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{S}} 1, \mathrm{~V}_{\mathrm{S}} 2$, ENA1, ENA2, IN1, and IN2 are within the limits set by the absolute maximum ratings, there are no restrictions on the relationship of each voltage level in comparison with the others (regarding which is higher or lower). (ex. $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}} 1,2=2 \mathrm{~V}, \mathrm{ENA}=\mathrm{IN}=5 \mathrm{~V}$)

Truth Table

IN1,2	ENA1,2	OUT1,3	OUT2,4	Mode
L	H	H	L	Forward
H	H	L	H	Reverse
L	L	OFF	OFF	Standby
H	L	OFF	OFF	Standby

Vcont pin

As shown in the left diagram, the Vcont pin outputs the voltage of the band gap Zener $\mathrm{V}_{\mathrm{Z}}+\mathrm{V}_{\mathrm{F}}(=1.93 \mathrm{~V})$.
In normal use, this pin is left open.
The drive current I_{D} is varied by the Vcont voltage. However, because the band gap Zener is shared, it functions as a bridge.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1712-3.3-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP21021.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV

