Monolithic Digital IC
PWM Current Control Stepping Motor Driver

Overview

The LB1946 is stepping motor drive IC that implements PWM current control bipolar drive with a fixed off time. This IC features 15-current setting levels using a fixed VREF voltage and supports for microstepping drive from 1-2 phase excitation to 4W1-2 phase excitation drive. This device is optimal for driving stepping motors such as those used for carriage drive and paper feed in printers.

Applications

- PWM current control stepping motor drivers

Features

- PWM current control with a fixed off time
- Logic input serial-parallel converter (allows 1-2, W1-2, 2W1-2, and 4W1-2 phase excitation drive)
- Current attenuation switching function (with slow decay, fast decay, and mixed decay modes)
- Built-in upper and lower side output diodes
- Simultaneous on state prevention function (through current prevention)
- Noise canceller function
- Thermal shutdown circuit
- Shutoff on low logic system voltage circuit
- Low-power mode control pin

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Motor supply voltage	VBB		50	\checkmark
Peak output current	I_{0} PEAK	$\mathrm{tw} \leq 20 \mu \mathrm{~s}$	1.75	A
Maximum continuous output current	I_{0} max		1.5	A
Logic system supply voltage	V_{CC}		7.0	V
Logic input voltage range	$\mathrm{V}_{\text {IN }}$		-0.3 to V_{CC}	V
Emitter output voltage	VE		1.0	V
Operating temperature	Topr		-20 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$
Allowable power dissipation (IC internal)	Pd max	$\mathrm{Ta}=25^{\circ} \mathrm{C}$, independent IC	3.0	W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Ranges at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Motor supply voltage	VBB		10 to 45	V
Logic supply voltage	$V_{\text {CC }}$		4.5 to 5.5	V
Reference voltage	VREF		0.0 to 3.0	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{VBB}=45 \mathrm{~V}, \mathrm{VRES}=1.52 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			unit
			min	typ	max	
Output Block						
Output stage supply current	IBB ON		1.6	2.4	3.5	mA
	IBB OFF		1.3	1.9	2.5	mA
Output saturation voltage 1	V_{O} sat1	${ }^{1} \mathrm{O}=+1.0 \mathrm{~A}$ (sink)		1.2	1.6	V
Output saturation voltage 2	$\mathrm{V}_{\text {Osat2 }}$	$\mathrm{I}^{\mathrm{O}}=+1.5 \mathrm{~A}$ (sink)		1.5	1.9	V
Output saturation voltage 3	$V_{\text {Osat3 }}$	$\mathrm{l}^{\mathrm{O}}=-1.0 \mathrm{~A}$ (source)		1.9	2.2	V
Output saturation voltage 4	V_{O} sat4	${ }^{\mathrm{I}} \mathrm{O}=-1.5 \mathrm{~A}$ (source)		2.2	2.4	V
Output leakage current	$\mathrm{l}^{1} 1$ (leak)	$\mathrm{V}_{\mathrm{O}}=\mathrm{VBB}$ (sink)			50	$\mu \mathrm{A}$
	l^{2} (leak)	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ (source)	-50			$\mu \mathrm{A}$
Output sustain voltage	V_{O} sus	$\mathrm{L}=15 \mathrm{mH} \mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A}$ *	45			V
Logic Block						
Logic system supply current	${ }^{\text {I CC ON }}$	$\mathrm{D} 0=1, \mathrm{D} 1=1, \mathrm{D} 2=1, \mathrm{D} 3=1$ When these data values are set	25.5	37	48.5	mA
	${ }^{\text {I CC OFF1 }}$	D0=0,D1=0,D2=0,D3=0	18	26	34	mA
	${ }^{\text {I CC OFF2 }}$	ST=LOW	0.01	0.05	0.1	mA
Input voltage	V_{IH}		2			V
	V_{IL}				0.8	V
Input current	1 IH	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$			35	$\mu \mathrm{A}$
	IIL	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	6			$\mu \mathrm{A}$
Sense voltages	VE	$\mathrm{D} 0=1, \mathrm{D} 1=1, \mathrm{D} 2=1, \mathrm{D} 3=1$ When these data values are set	0.470	0.50	0.525	V
		D0=1,D1=1,D2=1,D3=0	0.445	0.48	0.505	V
		D0=1,D1=1,D2=0,D3=1	0.425	0.46	0.485	V
		D0=1,D1=1,D2=0,D3=0	0.410	0.43	0.465	V
		D0=1,D1=0,D2=1,D3=1	0.385	0.41	0.435	V
		D0=1,D1=0,D2=1,D3=0	0.365	0.39	0.415	V
		D0=1,D1=0,D2=0,D3=1	0.345	0.37	0.385	V
		D0=1,D1=0,D2=0,D3=0	0.325	0.35	0.365	V
		D0=0,D1=1,D2=1,D3=1	0.280	0.30	0.325	V
		D0=0,D1=1,D2=1,D3=0	0.240	0.26	0.285	V
		D0=0,D1=1,D2=0,D3=1	0.195	0.22	0.235	V
		D0=0,D1=1,D2=0,D3=0	0.155	0.17	0.190	V
		D0=0,D1=0,D2=1,D3=1	0.115	0.13	0.145	V
		D0=0,D1=0,D2=1,D3=0	0.075	0.09	0.100	V
Reference current	IREF	VREF=1.5V	-0.5			$\mu \mathrm{A}$
CR pin current	ICR	CR=1.0V	-1.7	-1.25	-0.9	mA
MD pin current	IMD	$\mathrm{MD}=1.0 \mathrm{~V}, \mathrm{CR}=4.0 \mathrm{~V}$	-5.0			$\mu \mathrm{A}$
Logic system on voltage	VLSDON		2.6	2.8	3.0	V
Logic system off voltage	VLSDOFF		2.45	2.65	2.85	V
LVSD hysteresis	VLHIS		0.03	0.15	0.35	V
Thermal shutdown temperature	Ts			170		${ }^{\circ} \mathrm{C}$

[^0]AC Electrical Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			unit
			min	typ	max	
Clock frequency	$\mathrm{f}_{\text {clk }}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		200	550	kHz
Data setup time	${ }^{\text {t }}$ D	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	0.9	2.5		$\mu \mathrm{s}$
Data hold time	${ }_{\text {t }}{ }^{\text {H }}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	0.9	2.5		$\mu \mathrm{s}$
Minimum clock high-level pulse width	${ }^{\text {tSCH}}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	0.9	2.5		$\mu \mathrm{s}$
Minimum clock low-level pulse width	${ }^{\text {t SCL }}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	0.9	2.5		$\mu \mathrm{s}$
SET pin stipulated time	tlat	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	0.9	2.5		$\mu \mathrm{s}$
SET pin signal pulse width	tlatw	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	1.9	5.0		$\mu \mathrm{s}$

VCC=3.3V Specification

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Emitter output voltage	VE		V	

Allowable Operating Ranges at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Motor system supply voltage	VBB		10 to 45	V
Logic system supply voltage	V_{CC}		3.0 to 3.6	V
Reference voltage	VREF		0.0 to 1.0	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{VBB}=45 \mathrm{~V}, \mathrm{VREF}=1.0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			unit
			min	typ	max	
Output Block						
Output stage supply current	IBB ON		1.6	2.4	3.5	mA
	IBB OFF		1.3	1.9	2.5	mA
Output saturation voltage 1	$V_{\text {Osat1 }}$	$\mathrm{I}^{\mathrm{O}}=+1.0 \mathrm{~A}$ (sink)		1.3	1.7	V
Output saturation voltage 2	$V_{\text {Osat2 }}$	$\mathrm{I}^{\mathrm{O}}=+1.5 \mathrm{~A}$ (sink)		1.6	2.0	V
Output saturation voltage 3	Vosat3	$\mathrm{I}^{\mathrm{O}}=-1.0 \mathrm{~A}$ (source)		1.9	2.2	V
Output saturation voltage 4	V_{O} sat4	${ }^{1} \mathrm{O}=-1.5 \mathrm{~A}$ (source)		2.2	2.4	V
Output leakage current	${ }^{1}{ }^{1}$ (leak)	$\mathrm{V}_{\mathrm{O}}=\mathrm{VBB}$ (sink)			50	$\mu \mathrm{A}$
	lo2 (leak)	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ (source)	-50			$\mu \mathrm{A}$
Output sustain voltage	V_{O} sus	$\mathrm{L}=15 \mathrm{mH} \mathrm{I}_{\mathrm{O}}=-1.5 \mathrm{~A}$ *	45			V

*Design guaranteed value
Continued on next page.

LB1946
Continued from preceding page.

Parameter	Symbol	Conditions	Ratings			unit
			min	typ	max	
Logic Block						
Logic system supply current	${ }^{\text {ICC ON }}$	$\mathrm{D} 0=1, \mathrm{D} 1=1, \mathrm{D} 2=1, \mathrm{D} 3=1$ When these data values are set	23.5	34	44.5	mA
	${ }^{\text {I CC }}$ OFF1	D0 $=0, \mathrm{D} 1=0, \mathrm{D} 2=0, \mathrm{D} 3=0$	16	23	30	mA
	ICC OFF2	$\mathrm{ST}=0.8 \mathrm{~V}$	0.005	0.03	0.1	mA
Input voltage	V_{IH}		2			V
	V_{IL}				0.8	V
Input current	IIH	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$			35	$\mu \mathrm{A}$
	IIL	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	6			$\mu \mathrm{A}$
Sense voltages	VE	$\mathrm{D} 0=1, \mathrm{D} 1=1, \mathrm{D} 2=1, \mathrm{D} 3=1$ When these data values are set	0.303	0.330	0.356	V
		D0=1,D1=1,D2=1,D3=0	0.290	0.315	0.341	V
		D0=1,D1=1,D2=0,D3=1	0.276	0.300	0.324	V
		D0 $=1, \mathrm{D} 1=1, \mathrm{D} 2=0, \mathrm{D} 3=0$	0.263	0.286	0.309	V
		D0 $=1, \mathrm{D} 1=0, \mathrm{D} 2=1, \mathrm{D} 3=1$	0.250	0.272	0.294	V
		D0=1,D1=0,D2=1,D3=0	0.236	0.257	0.278	V
		D0=1,D1=0,D2=0,D3=1	0.223	0.243	0.263	V
		D0=1,D1=0,D2=0,D3=0	0.209	0.228	0.247	V
		D0=0,D1=1,D2=1,D3=1	0.183	0.200	0.217	V
		D0 $=0, \mathrm{D} 1=1, \mathrm{D} 2=1, \mathrm{D} 3=0$	0.155	0.170	0.185	V
		D0=0,D1=1,D2=0,D3=1	0.128	0.143	0.158	V
		D0=0,D1=1,D2=0,D3=0	0.102	0.114	0.126	V
		D0=0,D1=0,D2=1,D3=1	0.074	0.085	0.096	V
		D0=0,D1=0,D2=1,D3=0	0.047	0.057	0.067	V
Reference current	IREF	VREF=1.5V	-0.5			$\mu \mathrm{A}$
CR pin current	ICR	$\mathrm{CR}=1.0 \mathrm{~V}$	-0.91	-0.7	-0.49	mA
MD pin current	IMD	$\mathrm{MD}=1.0 \mathrm{~V}, \mathrm{CR}=4.0 \mathrm{~V}$	-5.0			$\mu \mathrm{A}$
Logic system on voltage	VLSDON		2.6	2.8	3.0	V
Logic system off voltage	VLSDOFF		2.45	2.65	2.85	V
LVSD hysteresis	VLHIS		0.03	0.15	0.35	V
Thermal shutdown temperature	Ts			170		${ }^{\circ} \mathrm{C}$

AC Electrical Characteristics at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			unit
			min	typ	max	
Clock frequency	$\mathrm{f}_{\mathrm{clk}}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$		200	550	kHz
Data setup time	${ }^{\text {t }}$ S	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	0.9	2.5		$\mu \mathrm{s}$
Data hold time	${ }_{\text {t }}$ H	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	0.9	2.5		$\mu \mathrm{s}$
Minimum clock high-level pulse width	${ }^{\text {tSCH}}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	0.9	2.5		$\mu \mathrm{s}$
Minimum clock low-level pulse width	${ }^{\text {t SCL }}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	0.9	2.5		$\mu \mathrm{s}$
SET pin stipulated time	tlat	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	0.9	2.5		$\mu \mathrm{s}$
SET pin signal pulse width	tlatw	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	1.9	5.0		$\mu \mathrm{s}$

Package Dimensions

unit:mm (typ)
3147C

Block Diagram

Pin Assignment

Top view

Timing Chart

SET \qquad

Serial Transmission Data Definitions

No.	IA4	IA3	IA2	IA1	DE1	PH1	IB4	IB3	IB2	IB1	DE2	PH2	Output mode				$\begin{aligned} & \text { I/O } \\ & \text { ratio } \end{aligned}$	$\begin{gathered} \text { DEC } \\ \text { MODE } \end{gathered}$
	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	OUTA	OUTA-	OUTB	OUTB-		
0	1	1	1	1	1	1	1	1	1	1	1	1	H	L	H	L	100\%	SLOW
1	1	1	1	0	1	1	1	1	1	0	1	1	H	L	H	L	96	SLOW
2	1	1	0	1	1	1	1	1	0	1	1	1	H	L	H	L	91	SLOW
3	1	1	0	0	1	1	1	1	0	0	1	1	H	L	H	L	87	SLOW
4	1	0	1	1	1	1	1	0	1	1	1	1	H	L	H	L	83	SLOW
5	1	0	1	0	1	1	1	0	1	0	1	1	H	L	H	L	78	SLOW
6	1	0	0	1	1	1	1	0	0	1	1	1	H	L	H	L	74	SLOW
7	1	0	0	0	1	1	1	0	0	0	1	1	H	L	H	L	70	SLOW
8	0	1	1	1	1	1	0	1	1	1	1	1	H	L	H	L	61	SLOW
9	0	1	1	0	1	1	0	1	1	0	1	1	H	L	H	L	52	SLOW
10	0	1	0	1	1	1	0	1	0	1	1	1	H	L	H	L	44	SLOW
11	0	1	0	0	1	1	0	1	0	0	1	1	H	L	H	L	35	SLOW
12	0	0	1	1	1	1	0	0	1	1	1	1	H	L	H	L	26	SLOW
13	0	0	1	0	1	1	0	0	1	0	1	1	H	L	H	L	17	SLOW
14	1	1	1	1	0	0	1	1	1	1	0	0	L	H	L	H	100	FAST
15	1	1	1	0	0	0	1	1	1	0	0	0	L	H	L	H	96	FAST
16	1	1	0	1	0	0	1	1	0	1	0	0	L	H	L	H	91	FAST
17	1	1	0	0	0	0	1	1	0	0	0	0	L	H	L	H	87	FAST
18	1	0	1	1	0	0	1	0	1	1	0	0	L	H	L	H	83	FAST
19	1	0	1	0	0	0	1	0	1	0	0	0	L	H	L	H	78	FAST
20	1	0	0	1	0	0	1	0	0	1	0	0	L	H	L	H	74	FAST
21	1	0	0	0	0	0	1	0	0	0	0	0	L	H	L	H	70	FAST
22	0	1	1	1	0	0	0	1	1	1	0	0	L	H	L	H	61	FAST
23	0	1	1	0	0	0	0	1	1	0	0	0	L	H	L	H	52	FAST
24	0	1	0	1	0	0	0	1	0	1	0	0	L	H	L	H	44	FAST
25	0	1	0	0	0	0	0	1	0	0	0	0	L	H	L	H	35	FAST
26	0	0	1	1	0	0	0	0	1	1	0	0	L	H	L	H	26	FAST
27	0	0	1	0	0	0	0	0	1	0	0	0	L	H	L	H	17	FAST
28	0	0	0	0	*	*	0	0	0	0	*	*	OFF	OFF	OFF	OFF	0	-

Note *: Don't care (0 or 1)
Note 1: In the mixed decay mode, set D 4 and D 10 to 0 and set the MD pin to a level shown below.
Programmable MD voltage range
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ specifications: 1.6 to 3.9 V
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ specifications: 1.2 to 2.5 V

Current Settings Truth Table

IA4 (D0)	IA3 (D1)	IA2 (D2)	IA1 (D3)	Set Current IOUT	Current Ratio (\%)
1	1	1	1	11.5/11.5×VREF/3.04RE=IOUT	100
1	1	1	0	11.0/11.5×VREF/3.04RE=IOUT	95.65
1	1	0	1	10.5/11.5×VREF/3.04RE=IOUT	91.30
1	1	0	0	10.0/11.5×VREF/3.04RE=IOUT	86.95
1	0	1	1	9.5/11.5×VREF/3.04RE=lOUT	82.61
1	0	1	0	9.0/11.5×VREF/3.04RE=l OUT	78.26
1	0	0	1	8.5/11.5×VREF/3.04RE=l OUT	73.91
1	0	0	0	8.0/11.5×VREF/3.04RE=lOUT	69.56
0	1	1	1	7.0/11.5×VREF/3.04RE=IOUT	60.87
0	1	1	0	6.0/11.5×VREF/3.04RE=1OUT	52.17
0	1	0	1	$5.0 / 11.5 \times$ VREF/3.04RE=l OUT	43.48
0	1	0	0	4.0/11.5×VREF/3.04RE=lOUT	34.78
0	0	1	1	$3.0 / 11.5 \times$ VREF/3.04RE=loUT	26.08
0	0	1	0	2.0/11.5×VREF/3.04RE=l OUT	17.39

Note 1: The current ratios shown are calculated values.

Sample Application Circuit at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Top view

Sample Application Circuit at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Top view

Current Path in Slow Decay Mode

Regenerative current during upper-side transistor switching operation

Figure 1

Current Path in Fast Decay Mode

$--\rightarrow$ Current path when output is on
$-----\rightarrow$
Current path in fast decay mode

ILB01481

Switching Timing Chart During PWM Drive Mode

Slow decay (upper-side chopping)
Serial transmission data (D4, D10) $=$ High MD pin: Low

Mix decay logic setting
When serial transmission data (D4, D10) is Low
MD pin setting:
5V VCC type: 1.6 to 3.9 V
$3.3 V V_{C C}$ type: 1.2 to 2.5 V
CR voltage and MD pin voltage are compared to select dual-side chopping or upper-side chopping.
CR voltage > MD pin voltage: dual-side chopping
CR voltage < MD pin voltage: upper-side chopping
t on: Output on time
t off: Output off time
tm : Fast decay time in mix decay mode
tn: Noise cancellation time

1. Switching OFF time and noise cancellation time calculations

Notes on the CR pin setting (switching off time and noise canceller time)
The noise canceller time (Tn) and the switching off time (Toff) are set using the following formulas.

- When $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Noise canceller time (Tn)
$\mathrm{Tn} \approx \mathrm{C} \cdot \mathrm{R} \cdot \ln \{(1.5-\mathrm{RI}) /(4.0-\mathrm{RI})\}[\mathrm{s}]$
CR pin charge current: 1.25 mA
Switching off time (Toff)
Toff $\approx-\mathrm{C} \cdot \mathrm{R} \cdot \ln (1.5 / 4.8)[\mathrm{s}]$
Component value ranges
R: $5.6 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$
C: 470 pF to 2000 pF

- When $\mathrm{VCC}_{\mathrm{C}}=3.3 \mathrm{~V}$

Noise canceller time (Tn)
$\mathrm{Tn} \approx \mathrm{C} \cdot \mathrm{R} \cdot \ln \{(1.06-\mathrm{RI}) /(2.66-\mathrm{RI})\}[\mathrm{s}]$
CR pin charge current: 0.7 mA
Switching off time (Toff)
Toff $\approx-\mathrm{C} \cdot \mathrm{R} \cdot \ln (1.06 / 3.1)[\mathrm{s}]$

Figure 2 CR Pin Internal Circuit Structure
2. Notes on the MD pin

- If slow decay mode is set up by setting the D4 and D10 bits in the input serial data to 1 , the MD pin must be shorted to GND.
- If the decay mode is set up by setting the D4 and D10 bits in the input serial data to 0 , decay mode can be set with the MD pin.
When the $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ specifications are used, the setting voltage range for mixed decay mode is 1.6 to 3.9 V .
When the $V_{C C}=3.3 \mathrm{~V}$ specifications are used, the setting voltage range for mixed decay mode is 1.2 to 2.5 V .
If mixed decay mode will not be used with the fast decay mode setting, either:
Short the MD pin to GND to select fast decay mode, or
Short the MD pin to $V_{C C}$ to select slow decay mode.

3. Usage Notes

- Notes on the VREF pin

Since the VREF pin inputs the reference voltage used to set the current, applications must be designed so that noise does not occur at this pin.

- Notes on the GND pins

Since this IC switches large currents, care is required with respect to the GND pins.
The PCB pattern in sections where large currents flow must be designed with low impedances and must be kept separate from the small-signal system.
In particular, the GND terminals of the E pin sense resistor (RE) and external Schottky barrier diode GND terminals must be located as close as possible to the IC GND. The capacitor between VCC and ground and between VBB and GND must be as close as possible to the corresponding ${ }^{\mathrm{V}} \mathrm{CC}$ and VBB pin in the pattern.

- Power on sequence

When turning the power systems on
$\mathrm{V}_{\mathrm{CC}} \rightarrow$ logic level inputs (CLK, DATA, SET, and ST) $\rightarrow \mathrm{VREF} \rightarrow \mathrm{VBB}$
When turning the power systems off $\mathrm{VBB} \rightarrow \mathrm{VREF} \rightarrow$ logic level inputs (CLK, DATA, SET, and ST) $\rightarrow \mathrm{V}_{\mathrm{CC}}$

Note that if the power supply for the logic level inputs is on when the $V_{C C}$ power supply is off, a bias with an unstable state will be applied to the protection diodes at the ${ }^{\text {CC }}$ pins, and this can cause incorrect operation.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Motor/Motion/Ignition Controllers \& Drivers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 MSVGW54-14-5 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E 26700 BA5839FP-E2 IRAM236-1067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B STK672-630CN-E TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVB54 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 MSVTA120 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW45-14-5 MSVGW54-14-4 STK984-091A-E MP6519GQ-Z LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 NCP81382MNTXG TDA21801 LB11851FA-BH NCV70627DQ001R2G LB1938FAGEVB

[^0]: *Design guaranteed value

