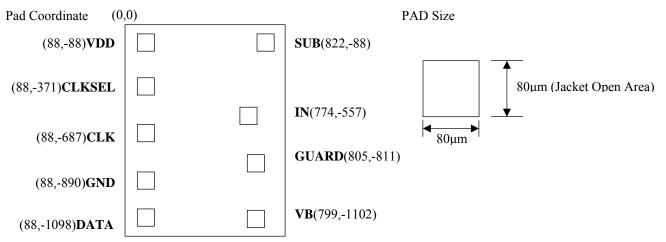
TENTATIVE SPECIFICATIONS


PRODUCT NAME:

LC706200CM

- 1. Case Outline: Wafer Ring(8inch)
- 2. Function: Semiconductor IC for Digital Silicon Microphone includes Pre-amplifier and Sigma Delta Modulator and Charge Pump.
- 3. Application: Cellular phone and other
- 4. Absolute Maximum Ratings at Ta=25°C, GND = 0V

Parameter	Symbol	Pin Name	Min	Max	Units
Maximum power supply voltage	V _{DD} max	VDD	-0.3	+4.0	V
Maximum input voltage	V _{CLK} max	CLK,CLKSEL	-0.3	VDD+0.3	V
Waximum input voltage	V _{IN} max	IN	-0.3	VDD+0.3	V
Maximum output voltage	Vomax	DATA	-0.3	VDD+0.3	V
Operating temperature range	Ta		-30	70	$^{\circ}\!\mathbb{C}$
Storage temperature range	Tstg		-40	85	$^{\circ}\! \mathbb{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

5. Circuit Parameters

	Parameter	Symbol	Pin Name	Test Condition	Min	Тур	Max	Units
In	put capacitance of die	Cin	IN			0.4		pF

Note: IN-Pin has a limited protection against ESD. Value of IN-Pin is proven by design.

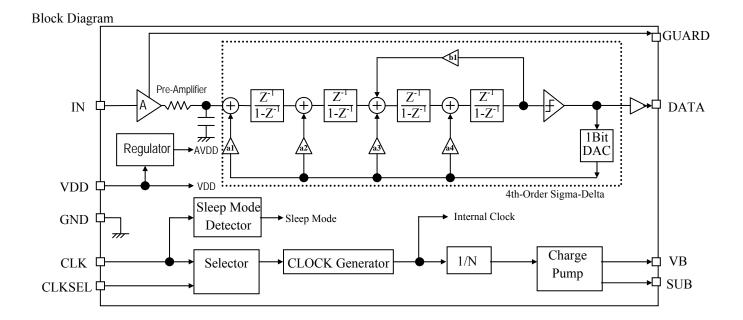
6. DC Electrical Characteristics Ratings at Ta=25°C,VDD=3.3V,GND=0V,Fclk=2.4MHz, Fduty=50%

Parameter	Symbol	Pin Name	Condition	Min	Тур	Max	Units
Power supply voltage	VDD	VDD		1.64	3.3	3.6	V
Power consumption (IO Power consumption is not Included)	IDD	VDD	VDD=3.3V		800		uA
Standby Current	ISTBY	VDD	VDD=3.3V			200	nA
Input/Output LOW level	Viol	CLK, DATA CLKSEL	DATA: Iol=0.5mA			0.35×VDD	V
Input/Output HIGH level	Vioh	CLK, DATA CLKSEL	DATA: Ioh=-0.5mA	0.65×VDD			V

Charge pump voltage	Vbias	VB/SUB	VDD=3.3V		10.5		V
Parameter	Symbol	Pin Name	Condition	Min	Тур	Max	Units
Charge Pump voltage tolerance	Tolerance	VB/SUB		-8		+8	%

7. AC Electrical Characteristics Ratings at Ta=+25°C,VDD=3.3V,GND=0V, Signal Frequency=1KHz, Measurement frequency=100Hz~20KHz, Fclk=2.4MHz,Fduty=50%, Bypass capacitor=0.1uF(VDD-GND)

Parameter	Symbol	Pin Name	Condition	Min	Тур	Max	Units
Clock Frequency (Normal Operation)	Fclk	CLK		1	2.4	3.25	MHz
Clock Frequency (Sleep Mode)	Fclk_SL	CLK				1	KHz
Clock Duty	Fduty	CLK		40		60	%
Over Sampling Ratio	OSR				50		
Maximum Input Voltage (Input Full Scale Voltage)	Vin	IN	0dBFS (=120dBSPL)		158.5		mVrms
	THD_0	DATA	Vout=0dBFS (= 120dBSPL) (= 158.5mVrms)			10	% (THD)
THD / THD+N	THD+N_1 ※1	DATA	Vout=-5dBFS (= 115dBSPL) (= 89.1mVrms) 1KHz Sin-Wave			5	% (THD+N)
	THD+N_2 ※1	DATA	Vout=-20dBFS (= 100dBSPL) (= 15.8mVrms) 50-4KHz Sin-Wave			1	% (THD+N)
Digital Noise Floor	DNF1	DATA	Bandwidth 20KHz A-weighted		-87		dBFS
PSRR ※1	PSRR	DATA	217Hz Square, 10MHz-Broadband Noise, 100mVpp		-70		dBFS
Transfer function *2	TF1	DATA			18		dB
Wake Up Time **1	WUT	CLK	Fclk=2.4MHz			10	ms
Fall Asleep Time **1	FAT		Fclk=1KHz			10	ms


Note1: **1 are Reference data:No measurement.

Note2: **2 Each product has been designed with performance of +/-0.5dB tolerance for transfer function however it's not checked in outgoing inspection.

Note3: Input Full Scale Voltage 0dBFS is equivalent to 120dBSPL (= 158.5mVrms).

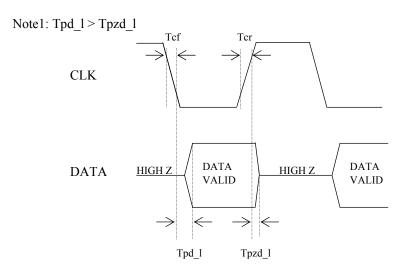
Note4: SNR Input Level Condition is -26dBFS (= 7.9mVrms, 94dBSPL, 1Pa).

(-) <u>No. 2</u>

Pin Descriptions

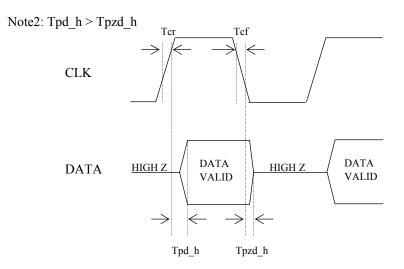
No.	Pin Name	Function	I/O	Pin conditions
-	GND	Ground	_	_
-	VDD	Power Supply	_	_
-	GUARD	Connect to GUARD of MEMS	_	_
	SUB	Connect to SUB of MEMS		_
-	DATA	PDM Data Output	output	
-	CLKSEL	CLK Select signal input Case1: When CLKSEL is LOW, PDM data is outputted in sync with negative edge of CLK. Case2: When CLKSEL is HIGH, PDM data is outputted in sync with positive edge of CLK.	Input	
-	CLK	Clock input	Input	
-	VB	Charge Pump Voltage Output	output	-
-	IN	Audio signal input	Input	

-) <u>No. 3</u>


No. 4

Switching Characteristics

 $(Ta=+25^{\circ}C, VDD=1.8V,GND=0V,Fclk=2.4MHz,Fduty=50\%)$


Case1: CLKSEL=LOW

Parameter	Symbol	Pin Name	Condition	Min	Тур	Max	Units
Clock Rise Time	Tcr	CLK				10	ns
Clock Fall Time	Tcf	CLK				10	ns
Output Data Delay	Tpd_1	DATA	CL=13pF,RL=1M Ω	20	31	40	ns
Output Hi-Z Delay	Tpzd_1	DATA	CL=13pF,RL=1M Ω	0	8	15	ns

 $Case 2: CLKSEL {=} HIGH$

Parameter	Symbol	Pin Name	Condition	Min	Тур	Max	Units
Clock Rise Time	Ter	CLK				10	ns
Clock Fall Time	Tcf	CLK				10	ns
Output Data Delay	Tpd_h	DATA	CL=13pF,RL=1M Ω	20	31	40	ns
Output Hi-Z Delay	Tpzd h	DATA	CL=13pF,RL=1M Ω	0	8	15	ns

(-)

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

-) <u>No. 5</u>

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio Amplifiers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

LV47002P-E NCP2811AFCT1G NCP2890AFCT2G SSM2377ACBZ-R7 IS31AP4915A-QFLS2-TR NCP2820FCT2G TDA1591T

TDA7563AH SSM2529ACBZ-R7 MAX9890AETA+T TS2012EIJT NCP2809BMUTXG NJW1157BFC2 SSM2375CBZ-REEL7

IS31AP4996-GRLS2-TR STPA002OD-4WX NCP2823BFCT1G MAX9717DETA+T MAX9717CETA+T MAX9724AEBC+TG45

LA4450L-E IS31AP2036A-CLS2-TR MAX9723DEBE+T TDA7563ASMTR AS3561-DWLT SSM2517CBZ-R7 MP1720DH-12-LF-P

SABRE9601K THAT1646W16-U MAX98396EWB+ PAM8965ZLA40-13 BD37532FV-E2 BD5638NUX-TR BD37512FS-E2 BD37543FS
E2 BD3814FV-E2 TPA3140D2PWPR TS2007EIJT IS31AP2005-DLS2-TR SSM2518CPZ-R7 AS3410-EQFP-500 FDA4100LV

MAX98306ETD+T TS4994EIJT NCP2820FCT1G NCP2823AFCT2G NCS2211MNTXG CPA2233CQ16-A1 OPA1604AIPWR

OPA1612AQDRQ1