LC72121, LC72121M, LC72121V

PLL Frequency Synthesizer for Electronic Tuning

ON Semiconductor ${ }^{\ominus}$

Overview

The LC72121, LC72121M and LC72121V are high input sensitivity (20 mVrms at 130 MHz) PLL frequency synthesizers for 3 V systems. These ICs are serial data (CCB*) compatible with the LC72131, and feature the improved input sensitivity and lower spurious radiation (provided by a redesigned ground system) required in high-performance AM/FM tuners.

Functions

- High-speed programmable divider
- FMIN: 10 to 160 MHz ... Pulse swallower technique
(With built-in divide-by-2 prescaler)
- AMIN: 2 to 40 MHz ... Pulse swallower technique 0.5 to 10 MHz ... Direct division technique
- IF counter
- IFIN: 0.4 to 15 MHz ... For AM and FM IF counting
- Reference frequency
- One of 12 reference frequencies can be selected (using a 4.5 or 7.2 MHz crystal element)
$1,3,5,9,10,3.125,6.25,12.5,15,25,50$, and 100 kHz
- Phase comparator
- Supports dead zone control.
- Built-in unlocked state detection circuit
- Built-in deadlock clear circuit
- An MOS transistor for an active low-pass filter is built in
- I/O ports
—Output-only ports: 4 pins
— I/O ports: 2 pins
- Supports the output of a clock time base signal
- Operating ranges
— Supply voltage: 2.7 to 3.6 V
SSOP24 (275mil)
[LC72121V]
- Operating temperature: -40 to $85^{\circ} \mathrm{C}$
- Package
— DIP22S, MFP24S, SSOP24
* Computer Control Bus (CCB) is an ON Semiconductor's original bus format and
the bus addresses are controlled by ON Semiconductor.

ORDERING INFORMATION

See detailed ordering and shipping information on page 26 of this data sheet.

- Comparison with the LC72131/M
— Serial data compatible (CCB)
- Identical pin functions
— Two Vss pins were added
- The DIP version is pin compatible
(Vss pins were inserted as the DIP22S NC pins)
- The MFP product provides a modified pin assignment
(The MFP20 package was replaced by an MFP24 package, and extra Vss pins were added)
- The SSOP24 is a newly developed package that has the same pin assignment as the MFP24S product

Pin Assignment

Block Diagram

Specifications
Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}$ SSd $=\mathrm{V}_{\mathrm{SSa}}=\mathrm{V}_{\mathrm{SSX}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions		Ratings	Unit
Maximum supply voltage	$V_{\text {DD }}$ max	$V_{D D}$		-0.3 to +7.0	V
Maximum input voltage	$\mathrm{V}_{\text {IN }} 1$ max	CE, DI, CL, AIN		-0.3 to +7.0	V
	$\mathrm{V}_{\text {IN }} 2$ max	XIN, FMIN, AMIN, IFIN		-0.3 to $V_{D D}+0.3$	V
	$\mathrm{V}_{\text {IN }} 3$ max	$\overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}$		-0.3 to +15	V
Maximum output voltage	$\mathrm{V}_{\mathrm{O}} 1$ max	DO		-0.3 to +7.0	V
	$\mathrm{V}_{\mathrm{O}} 2$ max	XOUT, PD		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	$\mathrm{V}_{\mathrm{O}} 3$ max	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}, \mathrm{AOUT}$		-0.3 to +15	V
Maximum output current	lo1 max	DO, AOUT		0 to +6.0	mA
	lo2 max	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO}}, \overline{\mathrm{IO}}, \overline{\mathrm{IO}}$		0 to +10.0	mA
Allowable power dissipation	Pd max	$\left(\mathrm{Ta} \leq 85^{\circ} \mathrm{C}\right)$	DIP22S:	350	mW
			MFP24S:	200	mW
			SSOP24:	150	mW
Operating temperature	Topr			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg			-55 to +125	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Allowable Operating Ranges at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SSd}}=\mathrm{V}_{\mathrm{SSa}}=\mathrm{V}_{\mathrm{SSX}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply voltage	$V_{D D}$	$V_{D D}$	2.7		3.6	V
Input high-level voltage	$\mathrm{V}_{\mathrm{H} 1} 1$	CE, DI, CL	$0.7 \mathrm{~V}_{\mathrm{DD}}$		6.5	V
	$\mathrm{V}_{\mathrm{IH}} 2$	$\overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$		13	V
Input low-level voltage	V_{IL}	CE, DI, CL, $\overline{\mathrm{IO} 1}, \overline{\mathrm{IO} 2}$	0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
Output voltage	$\mathrm{V}_{\mathrm{O}} 1$	DO	0		6.5	V
	$\mathrm{V}_{\mathrm{O}} 2$	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}$, AOUT	0		13	V
Input frequency	fiN^{1}	XIN: $\mathrm{V}_{\mathbf{I N} 1}$	1		8	MHz
	fiN^{2}	FMIN: $\mathrm{V}_{\text {IN }} 2$	10		160	MHz
	fiN^{3}	AMIN (SNS = 1): $\mathrm{V}_{\mathbb{1}} 3$	2		40	MHz
	fiN^{4}	AMIN (SNS = 0): $\mathrm{V}_{\text {IN }} 4$	0.5		10	MHz
	fin^{5}	IFIN: $\mathrm{V}_{\text {IN }} 5$	0.4		15	MHz
Input amplitude	$\mathrm{V}_{\text {IN }} 1$	XIN: fiN^{1}	200		800	mVrms
	$\mathrm{V}_{\text {IN }}$ 2-1	FMIN: $\mathrm{f}=10$ to 130 MHz	20		800	mVrms
	$\mathrm{V}_{\text {IN } 2-2}$	FMIN: $\mathrm{f}=130$ to 160 MHz	40		800	mVrms
	$\mathrm{V}_{1 \times}{ }^{3}$	AMIN (SNS = 1): flN 3	40		800	mVrms
	$\mathrm{V}_{\text {IN }} 4$	AMIN (SNS = 0): fIN^{4}	40		800	mVrms
	$\mathrm{V}_{\text {IN }} 5-1$	IFIN: $\mathrm{f}_{\text {IN }} 5, \mathrm{IFS}=1$	40		800	mVrms
	$\mathrm{V}_{\text {IN }} 5-2$	IFIN: $\mathrm{f}_{\text {IN }} 5$, IFS $=0$	70		800	mVrms
Guaranteed crystal oscillator frequency	Xtal	XIN, XOUT: *	4		8	MHz

Note: Recommended value for Cl for the crystal oscillator element: $\mathrm{CI} \leq 120 \Omega(4.5 \mathrm{MHz}), \mathrm{CI} \leq 70 \Omega(7.2 \mathrm{MHz})$
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics in the Allowable Operating Ranges

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Internal feedback resistance	Rf1	XIN		1		$\mathrm{M} \Omega$
	Rf2	FMIN		500		$\mathrm{k} \Omega$
	Rf3	AMIN		500		$\mathrm{k} \Omega$
	Rf4	IFIN		250		$\mathrm{k} \Omega$
Internal pull-down resistance	Rpd1	FMIN	100	200	400	$\mathrm{k} \Omega$
	Rpd2	AMIN	100	200	400	$\mathrm{k} \Omega$
Hysteresis	$\mathrm{V}_{\text {HIS }}$	CE, DI, CL		$0.1 \mathrm{~V}_{\mathrm{DD}}$		V
Output high-level voltage	$\mathrm{V}_{\mathrm{OH}} 1$	PD: $\mathrm{I}_{\mathrm{O}}=-1 \mathrm{~mA}$	$V_{D D}-1.0$			V

Continued from preceding page.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Output low-level voltage	$\mathrm{V}_{\mathrm{OL}} 1$	PD: $\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\mathrm{OL}} 2$	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}: \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			0.2	V
		$\overline{\mathrm{BO}}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}: \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}$			1.6	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{3}$	DO: $\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			0.2	V
		DO: $\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\mathrm{OL}} 4$	AOUT: $\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}, \mathrm{AIN}=1.3 \mathrm{~V}$			0.5	V
Input high-level current	$\mathrm{I}_{\mathrm{IH} 1}$	CE, DI, CL: $\mathrm{V}_{\mathrm{I}}=6.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{H}} 2$	$\overline{\mathrm{O} 1}, \overline{\mathrm{O} 2} \mathrm{~V} \mathrm{~V}_{\mathrm{I}}=13 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{H}^{3}}$	XIN: $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$	1.3		8	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{H}^{4}}$	FMIN, AMIN: $\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {DD }}$	2.5		15	$\mu \mathrm{A}$
	1 IH 5	IFIN: $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$	5.0		30	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{H} 6} 6$	AIN: $\mathrm{V}_{1}=6.5 \mathrm{~V}$			200	nA
Input low-level current	$\mathrm{I}_{\text {IL }} 1$	CE, DI, CL: $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }} 2$	$\overline{\mathrm{IO} 1}, \overline{\mathrm{IO} 2} \mathrm{~V} \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	IIL	XIN: $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	1.3		8	$\mu \mathrm{A}$
	$1_{\text {IL }} 4$	FMIN, AMIN: $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	2.5		15	$\mu \mathrm{A}$
	$1{ }_{\text {IL }} 5$	IFIN: $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	5.0		30	$\mu \mathrm{A}$
	IIL 6	AIN: $\mathrm{V}_{1}=0 \mathrm{~V}$			200	nA
Output off leakage current	IOFF1	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}, \mathrm{AOUT}: \mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	IOFF2	DO: $\mathrm{V}_{\mathrm{O}}=6.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
High-level 3-state off leakage current	IOFFH	PD: $V_{O}=V_{D D}$		0.01	200	nA
Low-level 3-state off leakage current	IOFFL	PD: $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		0.01	200	nA
Input capacitance	$\mathrm{C}_{\text {IN }}$	FMIN		6		pF
Supply current	$1{ }_{\text {DD }} 1$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}: \text { Xtal }=7.2 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}} 2=130 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{IN}} 2=20 \mathrm{mVrms} \end{aligned}$		2.5	6	mA
	$I_{D D}{ }^{2}$	V_{DD} : PLL block stopped (PLL inhibit mode) Crystal oscillator operating (crystal frequency: 7.2 MHz)		0.3		mA
	$\mathrm{I}_{\mathrm{D}} 3$	V_{DD} : PLL block stopped, crystal oscillator stopped			10	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Pin Descriptions

Pin name	Pin No.		Type	Function	Equivalent circuit
	LC72121	$\begin{aligned} & \hline \text { LC72121M } \\ & \text { LC72121V } \end{aligned}$			
$\begin{gathered} \text { XIN } \\ \text { XOUT } \end{gathered}$	$\begin{gathered} 1 \\ 22 \end{gathered}$	$\begin{gathered} 1 \\ 24 \end{gathered}$	Xtal	- Crystal oscillator element connections (4.5 or 7.2 MHz)	
FMIN	16	17	Local oscillator signal input	- FMIN is selected when DVS in the serial data is set to 1 . - Input frequency: 10 to 160 MHz - The signal is passed through an internal divide-by-two prescaler and then input to the swallow counter. - The divisor can be set to a value in the range 272 to 65535 . Since the internal divide-by-two prescaler is used, the actual divisor will be twice the set value.	A10147
AMIN	15	16	Local oscillator signal input	- AMIN is selected when DVS in the serial data is set to 0 . - When SNS in the serial data is set to 1 : - Input frequency: 2 to 40 MHz - The signal is input to the swallow counter directly. - The divisor can be set to a value in the range 272 to 65535 . The set value becomes the actual divisor. - When SNS in the serial data is set to 0 : - Input frequency: 0.5 to 10 MHz - The signal is input to a 12-bit programmable divider directly. - The divisor can be set to a value in the range 4 to 4095 . The set value becomes the actual divisor.	A10148

Continued on next page.

Continued from preceding page.

Pin name	Pin No.		Type	Function	Equivalent circuit
	LC72121	$\begin{aligned} & \text { LC72121M } \\ & \text { LC72121V } \\ & \hline \end{aligned}$			
CE	3	3	Chip enable	- This pin must be set high to enable serial data input (DI) or serial data output (DO).	
DI	4	4	Input data	- Input for serial data transferred from the controller	
CL	5	5	Clock	- Clock used for data synchronization for serial data input (DI) and serial data output (DO).	
DO	6	6	Output data	- Output for serial data transmitted to the controller. The content of the data transmitted is determined by DOCO through DOC2.	
$V_{D D}$	17	18	Power supply	- LC72121 power supply ($\mathrm{V}_{\mathrm{DD}} 2.7$ to 3.6 V) - The power on reset circuit operates when power is first applied.	-
$V_{\text {SSX }}$	2	2	Ground	- Ground for the crystal oscillator circuit	-
$\mathrm{V}_{\text {SSa }}$	21	22	Ground	- Ground for the low-pass filter MOS transistor	-
$V_{\text {SSd }}$	14	15	Ground	- Ground for the LC72121 digital systems other than those that use $V_{S S a}$ or $V_{S S X}$.	-
$\overline{\overline{\mathrm{IO} 1}}$	$\begin{aligned} & 11 \\ & 13 \end{aligned}$	$\begin{aligned} & 11 \\ & 14 \end{aligned}$	I/O port	- Shared function I/O ports - The pin function is determined by IOC1 and IOC2 in the serial data. When the data value 0 : Input port When the data value 1: Output port - When specified to function as an input port: The input pin state is reported to the controller through the DO pin. When the input state is low: The data will be 0 : When the input state is high: The data will be 1 : - When specified to function as an output port: The output state is determined by IO 1 and IO 2 in the serial data. When the data value is 0 : The output state will be the open circuit state. When the data value is 1 : The output state will be a low level. - These pins are set to input mode after a power on reset.	
$\overline{\mathrm{BO}}$ $\overline{\mathrm{BO} 2}$ $\overline{\mathrm{BO}}$ $\overline{\mathrm{BO} 4}$	$\begin{gathered} 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	$\begin{gathered} 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	Output port	- Output-only ports - The output state is determined by BO1 through BO4 in the serial data. When the data value is 0 : The output state will be the open circuit state. When the data value is 1 : The output state will be a low level. - A time base signal $(8 \mathrm{~Hz})$ is output from $\overline{\mathrm{BO} 1}$ when TBC in the serial data is set to 1 .	
PD	18	19	Charge pump output	- PLL charge pump output A high level is output when the frequency of the local oscillator signal divided by N is higher than the reference frequency, and a low level is output when that frequency is lower. This pin goes to the highimpedance state when the frequencies match.	
$\begin{gathered} \text { AIN } \\ \text { AOUT } \end{gathered}$	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	Low-pass filter amplifier transistor	- Connections for the MOS transistor used for the PLL active low-pass filter.	
IFIN	12	13	IF counter	- The input frequency range is 0.4 to 15 MHz - The signal is passed directly to the IF counter. - The result is output, MSB first, through the DO pin. - Four measurement periods are supported: 4, 8, 32, and 64 ms .	
NC	-	$\begin{aligned} & 12 \\ & 23 \end{aligned}$	NC pin	- No connection	-

Procedures for Input and Output of Serial Data

This product uses the CCB (Computer Control Bus), which is original audio product serial bus format, for data input and output. This product adopts an 8 -bit address CCB format.

	I/O mode	Address								Function
		B0	B1	B2	B3	A0	A1	A2	A3	
	IN1 (82)	0	0	0	1	0	1	0	0	- Control data input (serial data input) mode - 24 bits of data are input. - See the "DI Control Data (serial data input)" section for details on the content of the input data.
2	IN2 (92)	1	0	0	1	0	1	0	0	- Control data input (serial data input) mode - 24 bits of data are input. - See the "DI Control Data (serial data input)" section for details on the content of the input data.
3	OUT (A2)	0	1	0	1	0	1	0	0	- Data output (serial data output) mode - The number of bits output is equal to the number of clock cycles. - See the "DO output Data (serial data output)" section for details on the content of the output data.
(1) CL: Normally high (2) CL: Normally low										

Structure of the DI Control Data (serial data input)

- IN1 mode

A10159

- IN2 mode

A10160

DI Control Data

No.	Control block/data	Function	Related data
1	Programmable divider data P0 to P15 DVS, SNS	- Specifies the divisor for the programmable divider. This is a binary value in which P15 is the MSB. The LSB changes depending on DVS and SNS. (* : don't care) * LSB: When P4 is the LSB, P0 to P3 are ignored. - These pins select the signal input to the programmable divider (FMIN or AMIN) and switch the input frequency range. (* : don't care) * See the "Structure of the Programmable Divider" section for details.	
2	Reference divider data R0 to R3 XS	- Reference frequency selection * PLL INHIBIT mode In this mode, the programmable divider and the IF counter block are stopped, the FMIN, AMIN, and IFIN pins are pulled down to ground, and the charge pump output goes to the high-impedance state. - Crystal oscillator element selection data $\begin{aligned} & \mathrm{XS}=0: 4.5 \mathrm{MHz} \\ & \mathrm{XS}=1: 7.2 \mathrm{MHz} \end{aligned}$ Note that 7.2 MHz is selected after a power on reset.	
3	IF counter control data CTE GT0, GT1	- IF counter measurement start command data CTE = 1: Starts the counter CTE $=0$: Resets the counter - Determines the IF counter measurement time. * See the "Structure of the IF Counter" section for details.	IFS

Continued on next page.

Continued from preceding page.

No.	Control block/data		Function	Related data
4	I/O port setup data IOC1,IOC2	- Specifies input or output for the shared function I/O pins ($\overline{\mathrm{IO} 1}$ and $\overline{\mathrm{IO}})$. Data = 0: Input port Data $=1$: Output port		
5	Output port data BO1 to BO4 IO1,IO2	- Determines the output state of the $\overline{\mathrm{BO} 1}$ through $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO} 1}$, and $\overline{\mathrm{OO} 2}$ output ports. Data $=0$: Open Data = 1: Low level - The data is reset to 0 , setting the pins to the open state, after a power on reset.		$\begin{aligned} & \text { IOC1 } \\ & \text { IOC2 } \end{aligned}$
6	DO pin control data DOC0 DOC1 DOC2	- Determines the DO pin output. The open state is selected after a power on reset. *1. end-UC: IF counter measurement end check (1) Count start (2) Count end (3) CE: high A10161 (1)When end-UC is selected and an IF count is started (by switching CTE from 0 to 1), the DO pin automatically goes to the open state. (2)When the IF counter measurement period completes, the DO pin goes to the low level, allowing applications to test for the completion of the count period. (3)The DO pin is set to the open state by performing a serial data input or output operation (when the CE pin is set high). *2. The DO pin will go to the open state if the corresponding IO pin is set up to be an output port. Note: During the data input period (the period that CE is high in IN1 or IN2 mode), the DO pin goes to the open state regardless of the DO pin control data (DOC0 to DOC2). During the data output period (the period that CE is high in OUT mode) the DO pin state reflects the internal DO serial data in synchronization with the CL clock, regardless of the DO pin control data (DOC0 to DOC2).		$\begin{aligned} & \text { UL0, UL1 } \\ & \text { CTE } \\ & \\ & \text { IOC1 } \\ & \text { IOC2 } \end{aligned}$
7	Unlocked state detection data ULO, UL1	- Selects the width of the phase error ($\varnothing \mathrm{E}$) det be unlocked if a phase error in excess of the * When the PLL is unlocked, the DO pin goes	ed for PLL lock state discrimination. The state is taken to tection width occurs. w and UL in the serial data output is set to 0 .	DOC0 DOC1 DOC2
8	Phase comparator control data DZ0, DZ1	- Controls the phase comparator dead zone Dead zone width: DZA < DZB < DZC < DZD		

Continued on next page.

Continued from preceding page.

| No. | Control block/data | Function | Related data |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | $\begin{array}{c}\text { Clock time base } \\ \text { TBC }\end{array}$ | $\begin{array}{l}\text { • Setting the TBC bit to } 1 \text { causes an 8-Hz clock time base signal with a } 40 \% \text { duty to be output from the } \\ \text { BO1 pin. (The BO1 data will be ignored.) }\end{array}$ | BO1 |$\}$

Structure of the DO Output Data (serial data output)

- OUT mode

A10162

DO Output Data

No.	Control block/data	Function	Related data
1	I/O port data 12, I1	- Data latched from the I/O port $\overline{\mathrm{O} 1}$ or $\overline{\mathrm{IO} 2}$ pin states. - These bits reflect the pin states regardless of the I/O port mode (input or output). The data is latched at the point the circuit enters data output mode (OUT mode). $\begin{aligned} & \mathrm{I} \leftarrow \text { The } \overline{\mathrm{IO} 1} \text { pin state } \\ & \mathrm{I} 2 \leftarrow \text { The } \overline{\mathrm{IO} 2} \text { pin state } \end{aligned} \begin{aligned} & \mathrm{H}: 1 \\ & \mathrm{~L}: 0 \end{aligned}$	$\begin{aligned} & \text { IOC1 } \\ & \text { IOC2 } \end{aligned}$
2	PLL unlocked state data UL	- Indicates the state of the unlocked state detection circuit. $\mathrm{UL} \leftarrow 0$: When the PLL is unlocked. $\mathrm{UL} \leftarrow 1$: When the PLL is locked or in the detection disabled mode.	$\begin{aligned} & \text { UL0 } \\ & \text { UL1 } \end{aligned}$
3	IF counter binary data C19 to C0	- Indicates the value of the IF counter (20-bit binary counter). $\mathrm{C} 19 \leftarrow$ MSB of the binary counter $\mathrm{CO} \leftarrow \mathrm{LSB}$ of the binary counter	CTE GT0 GT1

Serial Data Input (IN1/IN2) $\mathrm{t}_{\mathrm{SU}}, \mathrm{t}_{\mathrm{HD}}, \mathrm{t}_{\mathrm{EL}}, \mathrm{t}_{\mathrm{ES}}, \mathrm{t}_{\mathrm{EH}} \geq 0.75 \mu \mathrm{~s} \mathrm{t}_{\mathrm{LC}}<0.75 \mu \mathrm{~s}$

- CL: Normally high

- CL: Normally low

Serial Data Output (Out) $\mathrm{t}_{\mathrm{SU}}, \mathrm{t}_{\mathrm{HD}}, \mathrm{t}_{\mathrm{EL}}, \mathrm{t}_{\mathrm{ES}}, \mathrm{t}_{\mathrm{EH}} \geq 0.75 \mu \mathrm{~s} \mathrm{t}_{\mathrm{DC}}, \mathrm{t}_{\mathrm{DH}}<0.35 \mu \mathrm{~s}$

- CL: Normally high

- CL: Normally low

Note: The data conversion times ($t_{D C}$ and $t_{D H}$) depend on the value of the pull-up resistor and the printed circuit board capacitance since the DO pin is an n-channel open-drain circuit.

Serial Data Timing

A10167
When CL is Stopped at the Low Level

When CL is Stopped at the High Level

Parameter	Symbol	Conditions		Ratings			Unit
				min	typ	max	
Data setup time	tsu	DI, CL		0.75			$\mu \mathrm{s}$
Data hold time	t_{HD}	DI, CL		0.75			$\mu \mathrm{s}$
Clock low level time	t_{CL}	CL		0.75			$\mu \mathrm{s}$
Clock high level time	t_{CH}	CL		0.75			$\mu \mathrm{s}$
CE wait time	$t_{\text {EL }}$	CE, CL		0.75			$\mu \mathrm{s}$
CE setup time	$\mathrm{t}_{\text {ES }}$	CE, CL		0.75			$\mu \mathrm{s}$
CE hold time	t_{EH}	CE, CL		0.75			$\mu \mathrm{s}$
Data latch change time	tLC					0.75	$\mu \mathrm{s}$
Data output time	$t_{\text {DC }}$	DO, CL	These values differ depending on the value of the pull-up resistor used and the printed circuit board capacitance.			0.35	$\mu \mathrm{s}$
	$t_{\text {DH }}$	DO, CE				0.35	$\mu \mathrm{s}$

Structure of the Programmable Divider

	DVS	SNS	Input pin	Set divisor	Actual divisor	Input frequency range
A	1	$*$	FMIN	272 to 65535	Twice the set value	10 to 160 MHz
B	0	1	AMIN	272 to 65535	The set value	2 to 40 MHz
C	0	0	AMIN	4 to 4095	The set value	0.5 to 10 MHz

*: Don't care

Sample Programmable Divider Divisor Calculations

- For FM with a step size of $50 \mathrm{kHz}\left(\mathrm{DVS}=1, \mathrm{SNS}={ }^{*}\right.$: FMIN selected)

FM RF $=90.0 \mathrm{MHz}(\mathrm{IF}+10.7 \mathrm{MHz})$
FM VCO $=100.7 \mathrm{MHz}$
PLL fref $=25 \mathrm{kHz}(\mathrm{R} 0=0, \mathrm{R} 1=1, \mathrm{R} 2=0, \mathrm{R} 3=0)$
100.7 MHz (FM VCO) $\div 25 \mathrm{kHz}$ (fref) $\div 2$ (for the FMIN $1 / 2$ prescaler) $2014 \rightarrow 07 \mathrm{DE}$ (hexadecimal)

- For SW with a step size of $5 \mathrm{kHz}(\mathrm{DVS}=0, \mathrm{SNS}=1$: AMIN high-speed operation selected)

SW RF $=21.75 \mathrm{MHz}(\mathrm{IF}+450 \mathrm{kHz})$
$\mathrm{SW} \mathrm{VCO}=22.20 \mathrm{MHz}$
PLL fref $=5 \mathrm{kHz}(\mathrm{R} 0=0, \mathrm{R} 1=1, \mathrm{R} 2=0, \mathrm{R} 3=1)$
$22.2 \mathrm{MHz}(\mathrm{SW} \mathrm{VCO}) \div 5 \mathrm{kHz}($ fref $)=4440 \rightarrow 1158$ (hexadecimal)

- For MW with a step size of $9 \mathrm{kHz}(\mathrm{DVS}=0, \mathrm{SNS}=0:$ AMIN low-speed operation selected $)$

MW RF $=1008 \mathrm{kHz}(\mathrm{IF}+450 \mathrm{kHz})$
$\mathrm{WM} \mathrm{VCO}=1458 \mathrm{kHz}$
PLL fref $=9 \mathrm{kHz}(\mathrm{R} 0=1, \mathrm{R} 1=0, \mathrm{R} 2=0, \mathrm{R} 3=1)$
1458 (MW VCO) $\div 9 \mathrm{kHz}($ fref) $=162 \rightarrow 0 \mathrm{~A} 2$ (hexadecimal)

Structure of the IF Counter

The LC72121 IF counter is a 20-bit binary counter, and takes the IF signal from the IFIN pin as its input. The result of the count can be read out serially, MSB first, from the DO pin.

GT1	GT0	Measurement time	
		Measurement time (GT)	Wait time (twu)
0	0	4 ms	3 to 4 ms
0	1	8	3 to 4 ms
1	0	32	7 to 8 ms
1	1	64	7 to 8 ms

The IF frequency (Fc) is measured by determining how many pulses were input to the IF counter in the stipulated measurement time, GT.

$$
\mathrm{Fc}=\frac{\mathrm{C}}{\mathrm{GT}}(\mathrm{C}=\mathrm{Fc} \times \mathrm{GT}) \quad \mathrm{C}: \text { Counted value (the number of pulses) }
$$

IF Counter Frequency Measurement Examples

- When the measurement time (GT) is 32 ms and the counted value (C) is 53980 (hexadecimal) or 342,400 (decimal). IF frequency $\left(\mathrm{F}_{\mathrm{C}}\right)=342400 \div 32 \mathrm{~ms}=10.7 \mathrm{MHz}$

- When the measurement time (GT) is 8 ms and the counted value (C) is E10 (hexadecimal) or 3600 (decimal). IF frequency $\left(\mathrm{F}_{\mathrm{C}}\right)=3600 \div 8 \mathrm{~ms}=450 \mathrm{kHz}$

IF Counter Operation

A10176

Applications must first, before starting an IF count operation reset the IF counter by setting CTE in the serial data to 0 . The IF counter operation is started setting CTE in the serial data from 0 to 1 . Although the serial data is latched by dropping the CE pin from high to low, the IF signal input to the IFIN pin must be provided within the wait time from the point CE goes low. Next, the readout of the IF counter after measurement is complete must be performed while CTE is still 1 , since the counter will be reset if CTE is set to 0 .

Note: If IF counting is used, applications must determine whether or not the IF IC SD (station detect) signal is present in the microcontroller software, and perform the IF count only if that signal is asserted. This is because auto-search techniques that use IF counting only are subject to incorrect stopping at points where there is no station due to IF buffer leakage.
Note that the LC72121 input sensitivity can be controlled with the IFS bit in the serial data.
Reduced sensitivity mode ($\mathrm{IFS}=0$) must be selected when this IC is used in conjunction with an IF IC that does not provide an SD output and auto-search is implemented using only IF counting.

IFIN Minimum Sensitivity Standard
Input frequency : $\mathrm{f}[\mathrm{MHz}]$

IFS data	$0.4 \leq \mathrm{f}<0.5$	$0.5 \leq \mathrm{f}<8$	$8 \leq \mathrm{f} \leq 15$
1(Normal mode)	$40 \mathrm{mVrms}(0.1$ to 3 mVrms$)$	40 mVrms	$40 \mathrm{mVrms}(1$ to 15 mVrms$)$
0 (Degraded sensitivity mode)	$70 \mathrm{mVrms}(5$ to 10 mVrms$)$	70 mVrms	$70 \mathrm{Vrms}(30$ to 40 mVrms$)$

[^0]
Unlocked State Detection Timing

- Unlocked state detection timing

Unlocked state detection is performed during the reference frequency (fref) period (interval). This means that a period at least as long as the period of the reference frequency is required to recognize the locked/unlocked state. However, applications must wait at least twice the period of the reference frequency immediately after changing the divisor (N) before checking the locked/unlocked state.

Figure 1 Unlocked State Detection Timing
For example, if fref is 1 kHz (a period of 1 ms) applications must wait at least 2 ms after the divisor N is changed before performing a locked/unlocked check.

Figure 2 Circuit Structure

Figure 3 Combining with Software

- Outputting the unlocked state data in the serial data

At the point of data output 1 in figure 3, the unlocked state data will indicate the unlocked state, since the VCO frequency is not stable (locked) yet. In cases such as this, the application should wait at least one whole period and then check again whether or not the frequency has stabilized with the data output 2 operation in the figure. Applications can implement even more reliable recognition of the locked state by performing several more checks of the state and requiring that the locked state be detected sequentially.

<Flowchart for Lock Detection>

- Directly outputting the unlocked state to the DO pin

Since the unlocked state (high level when locked, low when unlocked) is output from the DO pin, applications can check for the locked state by waiting at least two reference frequency periods after changing the divisor N. However, in this case also, even more reliable recognition of the locked state can be achieved by performing several checks of the state and requiring that the locked state be detected sequentially.

Clock Time Base Usage Notes

When using the clock time base output function, the output pin $(\overline{\mathrm{BO} 1})$ pull-up resistor must have a value of over $100 \mathrm{k} \Omega$. The use of a Schmitt input in the microcontroller that accepts this signal is recommended to reduce chattering. This is to prevent degradation of the VCO C / N characteristics when combining with a loop filter that uses the internal transistor provided to form a low-pass filter. Although the ground for the clock time base output pin $\left(\mathrm{V}_{\mathrm{SSd}}\right)$ and the ground for the transistor $\left(\mathrm{V}_{\mathrm{SSa}}\right)$ are isolated internally on the chip, applications must take care to avoid ground loops and minimize current fluctuations in the time base pin to prevent degradation of the low-pass filter characteristics.

Pin States after a Power on Reset

Sample Application Circuit

 (Using the DIP22S package)

Other Items

- Notes on the phase comparator dead zone

DZ1	DZ0	Dead zone mode	Charge pump	Dead zone
0	0	DZA	ON/ON	--0 s
0	1	DZB	ON/ON	-0 s
1	0	DZC	OFF/OFF	+0 s
1	1	DZD	OFF/OFF	++0 s

When the charge pump is used with one of the ON/ON modes, correction pulses are generated from the charge pump even if the PLL is locked. As a result, it is easy for the loop to become unstable, and special care is required in application design. The following problems can occur if an ON/ON mode is used.

- Sidebands may be created by reference frequency leakage.
- Sidebands may be created by low-frequency leakage due to the correction pulse envelope.

Although the loop is more stable when a dead zone is present (i.e. when an OFF/OFF mode is used), a dead zone makes it more difficult to achieve excellent C / N characteristics. On the other hand, while it is easy to achieve good C/N characteristics when there is no dead zone, achieving good loop stability is difficult. Accordingly, the DZA and DZB settings, in which there is no dead zone, can be effective in situations where a signal-to-noise ratio of 90 to 100 dB or higher is required in FM reception, or where it is desirable to increase the pilot margin in AM stereo reception. However, if such a high signal-to-noise ratio is not required for FM reception, if an adequate pilot margin can be acquired in AM stereo reception, or if AM stereo is not required, then either DZC or DZD, in which there is a dead zone, should be chosen.

Dead Zone

As shown in figure 1, the phase comparator compares a reference frequency (fr) with fp . As shown in figure 2 , the phase comparator's characteristics consist of an output voltage (V) that is proportional to the phase difference ø. However, due to internal circuit delay and other factors, an actual circuit has a region (the dead zone, B) where the circuit cannot actually compare the phases. To implement a receiver with a high S / N ratio, it is desirable that this region be as small as possible. However, it is often desirable to have the dead zone be slightly wider in popularly-priced models. This is because in certain cases, such as when there is a strong RF input, popularly-priced models can suffer from mixer to VCO RF leakage that modulates the VCO. When the dead zone is small, the circuit outputs signals to correct this modulation and this output further modulates the VCO. This further modulation may then generate beats and the RF signal.

Figure 1

Figure 2

- Notes on the FMIN, AMIN, and IFIN pins

Coupling capacitors should be placed as close to their pin as possible. A capacitance of about 100 pF is desirable for these capacitors. In particular, if the IFIN pin coupling capacitor is not held under 1000 pF , the time to reach the bias level may become excessive and incorrect counts may result due to the relationship with the wait time.

- Notes on IF counting \rightarrow Use the SD signal in conjunction with IF counting

When counting the IF frequency, the microcontroller must determine the presence or absence of the IF IC SD (station detect) signal and turn on the IF counter buffer output and execute the IF count only if there is an SD signal. Autosearch techniques that only use the IF counter are subject to incorrect stopping at points where there is no station due to IF buffer leakage.

- DO pin usage

The DO pin can be used for IF counter count completion checking and as an unlock detection output in addition to its use in data output mode. It is also possible to have the DO pin reflect the state of an input pin to input that state to the microcontroller.

- Power supply pins

Capacitors must be inserted between the power supply $V_{D D}$ and $V_{S S}$ pins for noise exclusion. These capacitors must be placed as close as possible to the V_{DD} and V_{SS} pins.

- VCO setup

Applications must be designed so that the VCO (local oscillator) does not stop, even if the control voltage (Vtune) goes to 0 V . If it is possible for the oscillator to stop, the application must use the control data (DLC) to temporarily force Vtune to V_{CC} to prevent deadlock from occurring. (Deadlock clear circuit)

- Front end connection example

Since this product (and the LC72131 as well) is designed with the relatively high resistance of $200 \mathrm{k} \Omega$ for the pulldown (on) resistors built in to the FMIN and AMIN pins, a common AM/FM local oscillator buffer can be used as shown in the following circuit.

A10186

- PD pin

Note that the charge pump output voltage is reduced when this IC, which is a $3-\mathrm{V}$ system, is used to replace the LC72131, which is a 5-V system. This means that since the loop gain is reduced, the loop filter constants, the lock time (SD wait time), and other related parameters must be reevaluated in the end product design.

Package Dimensions

unit : mm
[LC72121]

PDIP22 I DIP22S (300 mil)
CASE 646AV
ISSUE A

Package Dimensions

unit : mm
[LC72121M]
SOIC24 W / MFP24S (300 mil)
CASE 751CG
ISSUE O

Package Dimensions

unit : mm
[LC72121V]

SSOP24 (275mil)
CASE 565AQ
ISSUE A

SOLDERING FOOTPRINT*

NOTE: The measurements are not to guarantee but for reference only.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code
$Y=$ Year
M = Month
DDD = Additional Traceability Data
*This information is generic.
Pb-Free indicator, "G" or microdot " $\stackrel{\text { ", }}{ }$ may or may not be present.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC72121-D-E	DIP22S(300mil) (Pb-Free)	$22 /$ Fan-Fold
LC72121M-TLM-E	MFP24S(300mil) (Pb-Free)	$2000 /$ Tape and Reel
LC72121V-D-MPB-E	SSOP24(275mil) (Pb-Free)	$60 /$ Fan-Fold
LC72121V-D-TML-E	SSOP24(275mil) (Pb-Free)	$1000 /$ Tape and Reel
LC72121V-TLM-E	SSOP24(275mil) (Pb-Free)	$1000 /$ Tape and Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Synthesizer / Jitter Cleaner category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
CY28323OXC MPC9230EIR2 8T49N287A-998NLGI 8T49N286A-999NLGI PI6CX201ALE 8T49N285A-999NLGI PL902166USY 954204CGLF 252MI-52LF 9LPRS485DGLF 8T49N285A-998NLGI P1P8160AG-10CR DS31406GN+ PL902167USY 8T49N287A999NLGI 8T49N286A-998NLGI AD9542BCPZ 8T49N287A-041NLGI Si5344H-D-GM 8A34001E-000AJG HMC822LP6CETR SI5345D-A03700-GM 83PN187DKILF CS230009-CZZ 8T49N287-999NLGI 84330CYLN 83PN625DKILF 83PN156DKILF MK2703BSLFTR 954101DFLF AD9578BCPZ-REEL7 SM802124UMG 8T49N286-999NLGI 840001BGLF 251PMLF SI5324E-C-GM SI5324D-C-GM PI6CX201ALE 841S101EGILFT LMK04808BISQ/NOPB 8T49N287-998NLGI 291PGILF 9LRS3165BGLFT SI2168-D60-GMR SI5347A-B03693-GM SI5347A-D-GM SI5347A-D04325-GM 83PN15639ANRGI 8430252CGI-45LF 9LPRS365BGLFT

[^0]: Note: Values in parentheses are actual performance values that are provided for reference purposes.

