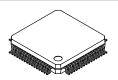
CD Driver, 1/4, 1/3-Duty General-Purpose

LC75829PW

Overview

The LC75829PW is 1/4 duty and 1/3 duty general-purpose microprocessor-controlled LCD driver that can be used in applications such as frequency display in products with electronic tuning.

In addition to being able to drive up to 208 segments directly, the LC75829PW can also control up to 4 general-purpose output ports. Incorporation of an oscillation circuit helps to reduce the number of external resistors and capacitors required.


Features

- Support for 1/4-duty 1/3-bias or 1/3-duty 1/3-bias Drive Techniques under Serial Data Control
 - When 1/4-duty: Capable of Driving up to 208 Segments
 - When 1/3-duty: Capable of Driving up to 159 Segments
- Serial Data Input Supports CCB* Format Communication with the System Controller (Support 3.3 V and 5 V Operation)
- Serial Data Control of the Power–Saving Mode Based Backup Function and the All Segments Forced Off Function
- Serial Data Control of Switching between the Segment Output Port and General-Purpose Output Port Function (Support for up to 4 General-Purpose Output Ports)
- Support for Clock Output Function of 1ch
- Serial Data Control of the Frame Frequency of the Common and Segment Output Waveforms
- Serial Data Control of Switching between the Internal Oscillator Operating Mode and External Clock Operating Mode
- High Generality, since Display Data is Displayed Directly without the Intervention of a Decoder Circuit
- The INH Pin Allows the Display to be Forced to the Off State
- Incorporation of an Oscillator Circuit (Incorporation of Resistor and Capacitor for an Oscillation)

ON Semiconductor®

www.onsemi.com

SPQFP64 10x10 / SQFP64 CASE 131AK

MARKING DIAGRAM

LC75829 = Specific Device Code

Y = Year M = Month

DDD = Additional Traceability Data

ORDERING INFORMATION

See detailed ordering and shipping information on page 22 of this data sheet.

^{*}Computer Control Bus (CCB) is an ON Semiconductor's original bus format and the bus addresses are controlled by ON Semiconductor.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C, $V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions	Ratings	Unit
Maximum Supply Voltage	V _{DD} max	V_{DD}	-0.3 to +6.5	V
Input Voltage	V _{IN} 1	CE, CL, DI, ĪNĦ	-0.3 to +6.5	V
	V _{IN} 2	OSCI, V _{DD} 1, V _{DD} 2	-0.3 to V _{DD} +0.3	
Output Voltage	V _{OUT}	S1 to S53, COM1 to COM4, P1 to P4	-0.3 to V _{DD} +0.3	V
Output Current	I _{OUT} 1	S1 to S52	300	μΑ
	I _{OUT} 2	COM1 to COM4, S53	3	mA
	I _{OUT} 3	P1 to P4	5	
Allowable Power Dissipation	Pd max	T _A = 85°C	200	mW
Operating Temperature	Topr		-40 to +85	°C
Storage Temperature	Tstg		-55 to +125	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING RANGES ($T_A = -40 \text{ to } +85^{\circ}\text{C}, \ V_{SS} = 0 \text{ V}$)

				Ratings		
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	V_{DD}	V_{DD}	4.5	-	6.0	V
Input Voltage	V _{DD} 1	V _{DD} 1	-	2/3 V _{DD}	V_{DD}	V
	V _{DD} 2	V _{DD} 2	-	1/3 V _{DD}	V_{DD}	
Input High-Level Voltage	V _{IH} 1	CE, CL, DI, ĪNĦ	0.4 V _{DD}	-	6.0	V
	V _{IH} 2	OSCI: External clock operating mode	0.4 V _{DD}	-	V_{DD}	
Input Low-Level Voltage	V _{IL} 1	CE, CL, DI, ĪNĦ	0	-	0.2 V _{DD}	V
	V _{IL} 2	OSCI: External clock operating mode	0	-	0.2 V _{DD}	
External Clock Operating Frequency	f _{CK}	OSCI: External clock operating mode [Figure 4]	10	300	600	kHz
External Clock Duty Cycle	D _{CK}	OSCI: External clock operating mode [Figure 4]	30	50	70	%
Data Setup Time	tds	CL, DI [Figure 2] [Figure 3]	160	_	-	ns
Data Hold Time	tdh	CL, DI [Figure 2] [Figure 3]	160	_	-	ns
CE Wait Time	tcp	CE, CL [Figure 2] [Figure 3]	160	-	-	ns
CE Setup Time	tcs	CE, CL [Figure 2] [Figure 3]	160	-	-	ns
CE Hold Time	tch	CE, CL [Figure 2] [Figure 3]	160	-	-	ns
High-Level Clock Pulse Width	tφH	CL [Figure 2] [Figure 3]	160	-	-	ns
Low-Level Clock Pulse Width	tφL	CL [Figure 2] [Figure 3]	160	-	-	ns
Rise Time	tr	CE, CL, DI [Figure 2] [Figure 3]	-	160	-	ns
Fall Time	tf	CE, CL, DI [Figure 2] [Figure 3]	-	160	-	ns
INH Switching Time	tc	INH, CE [Figure 17] [Figure 18]	10	-	-	μs

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (for the Recommended Operating Ranges)

					Ratings		
Parameter	Symbol	Pin	Conditions	Min	Тур	Max	Unit
Hysteresis	V_{H}	CE, CL, DI, INH		-	0.03V _{DD}	-	V
Input High-Level Current	I _{IH} 1	CE, CL, DI, INH	V _I = 6.0 V	-	=	5.0	μΑ
	I _{IH} 2	OSCI	V _I = V _{DD} : External clock operating mode	-	-	5.0	
Input Low-Level Current	l _{IL} 1	CE, CL, DI, ĪNĦ	V _I = 0 V	-5.0	_	-	μΑ
	I _{IL} 2	OSCI	V _I = 0 V: External clock operating mode	-5.0	-	-	
Output High-Level Voltage	V _{OH} 1	S1 to S53	$I_{O} = -20 \mu A$	V _{DD} – 0.9	=	-	V
	V _{OH} 2	COM1 to COM4	I _O = -100 μA	V _{DD} – 0.9	=	-	
	V _{OH} 3	P1 to P4	I _O = -1 mA	V _{DD} – 0.9	=	-	
Output Low-Level Voltage	V _{OL} 1	S1 to S53	I _O = 20 μA	-	=	0.9	V
	V _{OL} 2	COM1 to COM4	I _O = 100 μA	-	=	0.9	
	V _{OL} 3	P1 to P4	I _O = 1 mA	-	=	0.9	
Output Middle-Level	V _{MID} 1	S1 to S53	$1/3 \text{ bias } I_{O} = \pm 20 \mu A$	2/3 V _{DD} – 0.9	=	2/3 V _{DD} + 0.9	V
Voltage (Note 1)	V _{MID} 2	S1 to S53	$1/3$ bias $I_O = \pm 20 \mu A$	1/3 V _{DD} – 0.9	-	1/3 V _{DD} + 0.9	
	V _{MID} 3	COM1 to COM4	$1/3$ bias $I_O = \pm 100 \mu A$	2/3 V _{DD} – 0.9	-	2/3 V _{DD} + 0.9	
	V _{MID} 4	COM1 to COM4	$1/3$ bias $I_O = \pm 100 \mu A$	1/3 V _{DD} – 0.9	-	1/3 V _{DD} + 0.9	
Oscillator Frequency	fosc	Internal oscillator circuit	Internal oscillator operating mode	240	300	360	kHz
Current Drain	I _{DD} 1	V_{DD}	Power-saving mode	-	_	100	μΑ
	I _{DD} 2	V_{DD}	V _{DD} = 6.0 V Output open Internal oscillator operating mode	-	800	1600	
	I _{DD} 3	V _{DD}	V _{DD} = 6.0 V Output open External clock operating mode f _{CK} = 300 kHz V _{IH} 2 = 0.5 V _{DD} V _{IL} 2 = 0.1 V _{DD}	-	800	1600	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Excluding the bias voltage generation divider resistors built in the V_{DD}1 and V_{DD}2 (See Figure 1).

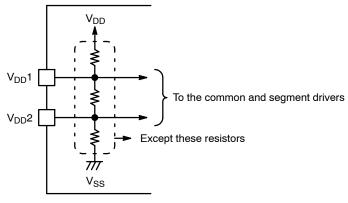


Figure 1.

1. When CL is stopped at the low level

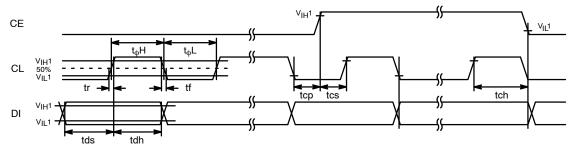


Figure 2.

2. When CL is stopped at the high level

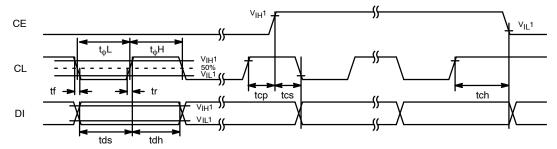


Figure 3.

3. OSCI pin clock timing in external clock operating mode



Figure 4.

PIN ASSIGNMENT

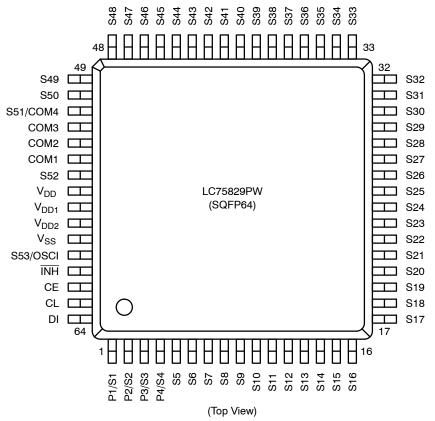


Figure 5. Pin Assignment

PIN FUNCTIONS

Symbol	Pin No.	Function	Active	I/O	Handling When Unused
S1/P1 to S4/P4 S5 to S50 S52	1 to 4 5 to 50 55	Segment outputs for displaying the display data transferred by serial data input. The S1/P1 to S4/P4 pins can be used as general–purpose output ports under serial data control.	-	0	OPEN
COM1 to COM3 COM4/S51	54 to 52 51	Common driver outputs The frame frequency is fo [Hz]. The COM4/S51 pin can be used as a segment output in 1/3 duty.	-	0	OPEN
S53/OSCI	60	Segment output. This pin can also be used as the external clock input pin when the external clock operating mode is selected by control data.	-	I/O	OPEN
		Serial data transfer inputs. Must be connected to the controller.			GND
CE	62	CE: Chip enable	Н	ı	
CL	63	CL: Synchronization clock		ı	
DI	64	DI: Transfer data	-	I	

PIN FUNCTIONS (continued)

Symbol	Pin No.	Function	Active	I/O	Handling When Unused
ĪNĦ	61	Display off control input INH = low (V _{SS})Display forced off S1/P1 to S4/P4 = low (V _{SS}) (These pins are forcibly set to the general-purpose output port function and held at the V _{SS} level.) S9 to S50, S52 = low (V _{SS}) COM1 to COM3 = low (V _{SS}) COM4/S51 = low (V _{SS}) S53/OSCI = low (V _{SS}) (This pin is forcibly set to the segment output port function and held at the V _{SS} level.) Stops the internal oscillator. Inhibits external clock input. INH = high (V _{DD})Display on Enables the internal oscillator circuit. (Internal oscillator operating mode) Enables external clock input. (External clock operating mode) However, serial data transfer is possible when the display is forced off.	L	I	GND
V _{DD} 1	57	Used to apply the LCD drive 2/3 bias voltage externally.	ı	1	OPEN
V _{DD} 2	58	Used to apply the LCD drive 1/3 bias voltage externally.	-	I	OPEN
V_{DD}	56	Power supply pin. A power voltage of 4.5 to 6.0V must be applied to this pin.	-	Ì	-
V _{SS}	59	Ground pin. Must be connected to ground.	_	=	-

Block Diagram

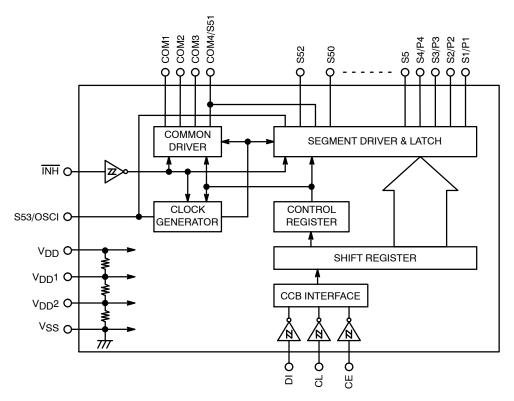
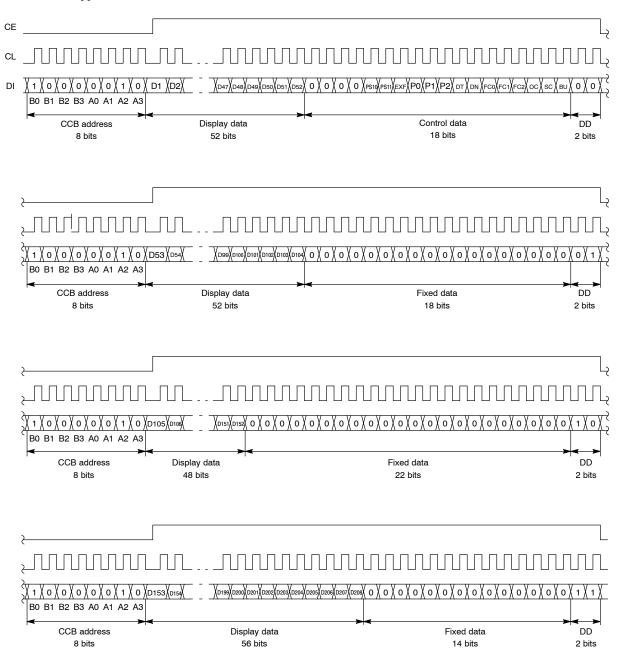
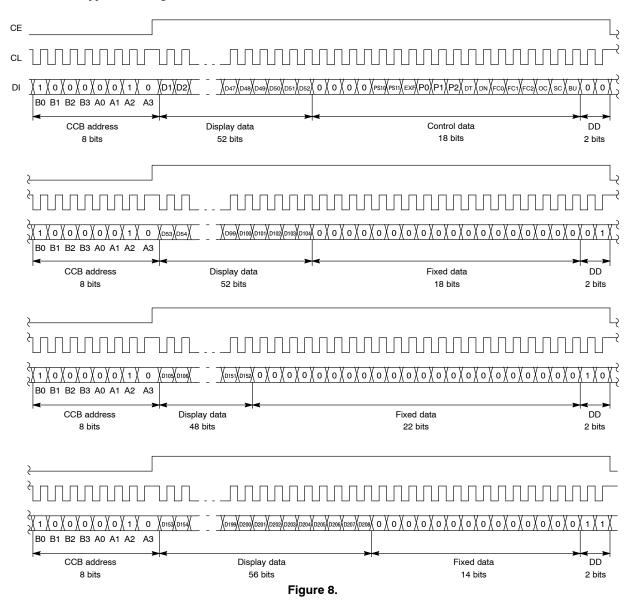



Figure 6. Block Diagram

Serial Data Input


- 1. 1/4 Duty
- (1) When CL is stopped at the low level

NOTE: DD is the direction data.

Figure 7.

(2) When CL is stopped at the high level

NOTE: DD is the direction data.

"41H"
Display data
General-purpose output port (P1) function setting control data
External clock operating frequency setting control data
Segment output port/general-purpose output port switching control data
1/4-duty 1/3-bias drive or 1/3-duty 1/3-bias drive switching control data
S52 pin and S53/OSCI pin state setting control data
Common/segment output waveform frame frequency control data
Internal oscillator operating mode/external clock operating mode switching control data
Segment on/off control data
Normal mode/power-saving mode control data

2. 1/3 Duty

(1) When CL is stopped at the low level

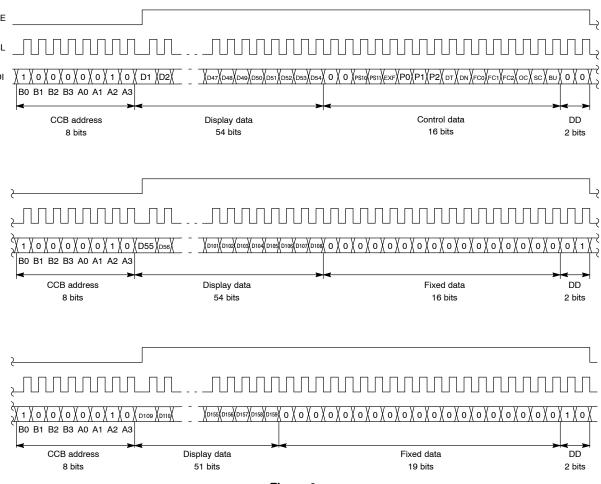
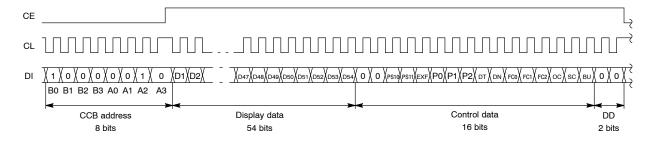
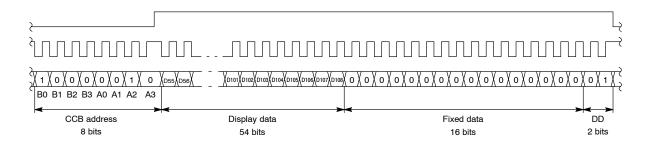




Figure 9.

NOTE: DD is the direction data.

(2) When CL is stopped at the high level

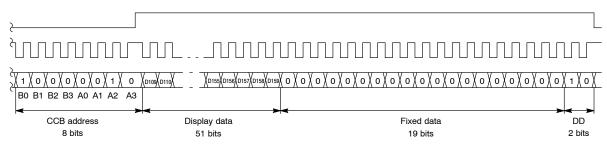


Figure 10.

NOTE: DD is the direction data.

 CCB address 	"41H"
• D1 to D159	Display data
• PS10, PS11	General-purpose output port (P1) function setting control data
• EXF	External clock operating frequency setting control data

P0 to P2 Segment output port/general-purpose output port switching control data
 DT 1/4-duty 1/3-bias drive or 1/3-duty 1/3-bias drive switching control data

• DN S52 pin and S53/OSCI pin state setting control data

• FC0 to FC2 Common/segment output waveform frame frequency control data

OC Internal oscillator operating mode/external clock operating mode switching control data

• SC Segment on/off control data

BU Normal mode/power-saving mode control data

Serial Data Transfer Example

- 1. 1/4 Duty
- When 153 or more segments are used
 All 288 bits of serial data must be sent.

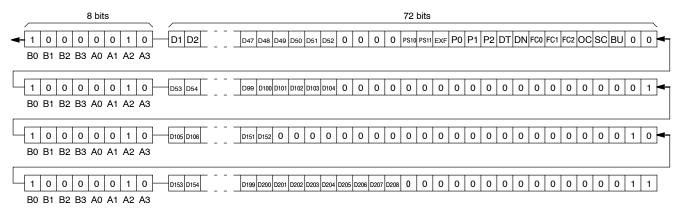


Figure 11.

• When fewer than 153 segments are used
Either 72, 144, or 216 bits of serial data must be sent, depending on the number of segments to be used.
However, the serial data shown below (the D1 to D52 display data and the control data) must always be sent.



Figure 12.

- 2. 1/3 Duty
- When 109 or more segments are used
 All 216 bits of serial data must be sent.

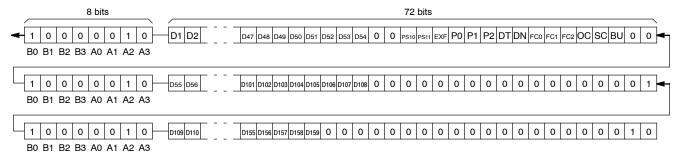


Figure 13.

When fewer than 109 segments are used
 Either 72, or 144 bits of serial data must be sent, depending on the number of segments to be used.
 However, the serial data shown below (the D1 to D54 display data and the control data) must always be sent.

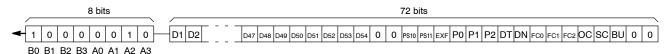


Figure 14.

Control Data Functions

1. PS10 and PS11 ... General-purpose output port (P1) function setting control data

These control data bits set the clock output or general-purpose output function (High or low level output) of the P1 output pin.

PS10	PS11	General-Purpose Output Port (P1) Function			
0	0	General-purpose output function (High or low level output)			
1	0	Clock output function (Clock frequency: fosc/2, f _{CK} /2)			
0	1	Clock output function (Clock frequency: fosc/8, f _{CK} /8)			

NOTE: When is setting (PS10, PS11) = (1,1), the P1 output pin selects the general-purpose output function (High or low level output).

2. EXF ... External clock operating frequency setting control data

This control data sets the operating frequency of the external clock which input into the OSCI pin, when the external clock operating mode (OC = "1") is set. However, this data is effective only when external clock operating mode (OC = "1") is set.

EXF	External Clock Operating Frequency f _{CK} [kHz]				
0	f _{CK} 1 = 300 [kHz] typ				
1	$f_{CK}2 = 38 \text{ [kHz] typ}$				

3. P0 to P2 ... Segment output port/general-purpose output port switching control data

These control data bits switch the segment output port/general-purpose output port functions of the S1/P1 to S4/P4 output pins.

Control Data			Output Pin State			
P0	P1	P2	S1/P1	S2/P2	S3/P3	S4/P4
0	0	0	S1	S2	S3	S4
0	0	1	P1	S2	S3	S4
0	1	0	P1	P2	S3	S4
0	1	1	P1	P2	P3	S4
1	0	0	P1	P2	P3	P4

NOTE: Sn (n = 1 to 4): Segment output ports

Pn (n = 1 to 4): General-purpose output ports

NOTE: When are setting (P0,P1,P2) = (1,0,1), (1,1,0), and (1,1,1), the all P1/S1 to P4/S4 output pins selects the segment output port.

The table below lists the correspondence between the display data and the output pins when these pins are selected to be general-purpose output ports.

	Correspondence Display Data			
Output Pin	1/4 Duty	1/3 Duty		
S1/P1	D1	D1		
S2/P2	D5	D4		
S3/P3	D9	D7		
S4/P4	D13	D10		

For example, if the circuit is operated in 1/4 duty and the S4/P4 output pin is selected to be a general-purpose output port, the S4/P4 output pin will output a high level (V_{DD}) when the display data D13 is 1, and will output a low level (V_{SS}) when D13 is 0.

4. DT ... 1/4-duty 1/3-bias drive or 1/3-duty 1/3-bias drive switching control data This control data bit selects either 1/4-duty 1/3-bias drive or 1/3-duty 1/3-bias drive.

DT	Drive Scheme	The COM4/S51 Pin State
0	1/4-duty 1/3-bias drive	COM4
1	1/3-duty 1/3-bias drive	S51

NOTE: COM4: Common output S51: Segment output

5. DN ... S52 pin and S53/OSCI pin state setting control data This control data bit sets state of the S52 pin and the S53/OSCI pin.

	Number of Display Segments		Pin State	
DN	1/4 Duty 1/3 Duty		S52	S53/OSCI
0	Up to 200 segments	Up to 153 segments	"L" (V _{SS})	"L" (V _{SS})/OSCI
1	Up to 208 segments	Up to 159 segments	S52	S53/OSCI

NOTE: "L" (V_{SS}) : Low (V_{SS}) level output

S52 : Segment output

"L" $(V_{SS})/OSCI$: Low (V_{SS}) level output in internal oscillator operating mode (OC = 0)

: External clock input in external clock operating mode (OC = 1) S53/OSCI : Segment output in internal oscillator operating mode (OC = 0)

: External clock input in external clock operating mode (OC = 1)

6. FC0 to FC2 ... Common/segment output waveform fram frequency control data

These control data bits set the frame frequency of the common and segment output waveforms.

С	ontrol Da	ta	Frame Frequency fo [Hz]			
FC0	FC1	FC2	Internal Oscillator Operating Mode (The control data OC is 0, fosc = 300 [kHz] typ)	External Clock Operating Mode (The Control Data OC is 1 and EXF is 0, f _{CK} 1 = 300 [kHz] typ)	External Clock Operating Mode (The Control Data OC is 1 and EXF is 1, f _{CK} 2 = 38 [kHz] typ)	
0	0	0	fosc/6144	f _{CK} 1/6144	f _{CK} 2/768	
0	0	1	fosc/4608	f _{CK} 1/4608	f _{CK} 2/576	
0	1	0	fosc/3072	f _{CK} 1/3072	f _{CK} 2/384	
0	1	1	fosc/2304	f _{CK} 1/2304	f _{CK} 2/288	
1	0	0	fosc/1536	f _{CK} 1/1536	f _{CK} 2/192	
1	0	1	fosc/1152	f _{CK} 1/1152	f _{CK} 2/144	
1	1	0	fosc/768	f _{CK} 1/768	f _{CK} 2/96	

NOTE: When is setting (FC0, FC1, FC2) = (1,1,1), the frame frequency is same as frame frequency at the time of the (FC0, FC1, FC2) = (0,1,0) setting (fosc/3072, f_{CK}1/3072, f_{CK}2/384).

7. OC ... Internal oscillator operating mode/external clock operating mode switching control data
This control data bit selects either the internal oscillator operating mode or external clock operating mode.

ос	Fundamental Clock Operating Mode	I/O Pin (S53/OSCI) State	
0	Internal oscillator operating mode	S53	
1	External clock operating mode	OSCI	

NOTE: S53: Segment output OSCI: External clock input

8. SC ... Segment on/off control data

This control data bit controls the on/off state of the segments.

sc	Display State	
0	On	
1	Off	

Note that when the segments are turned off by setting SC to 1, the segments are turned off by outputting segment off waveforms from the segment output pins.

9. BU ... Normal mode/power-saving mode control data

This control data bit selects either normal mode or power-saving mode.

BU	Mode
0	Normal mode
1	Power saving mode (In this mode, the internal oscillator circuit stops oscillation (the S53/OSCI pin is configured for segment output) if the IC is in the internal oscillator operating mode (OC = 0) and the IC stops receiving external clock signals (the S53/OSCI pin is configured for external clock input) if the IC is in the external clock operating mode (OC = 1). The common and segment output pins go to the V _{SS} level. However, the S1/P1 to S4/P4 output pins can be used as general-purpose output ports under the control of the data bits P0 to P2. (The general-purpose output port P1 can not be used as clock output)).

Display Data and Output Pin Correspondence (1/4 Duty)

Output Pin	COM1	COM2	СОМЗ	COM4
S1/P1	D1	D2	D3	D4
S2/P2	D5	D6	D7	D8
S3/P3	D9	D10	D11	D12
S4/P4	D13	D14	D15	D16
S5	D17	D18	D19	D20
S6	D21	D22	D23	D24
S7	D25	D26	D27	D28
S8	D29	D30	D31	D32
S9	D33	D34	D35	D36
S10	D37	D38	D39	D40
S11	D41	D42	D43	D44
S12	D45	D46	D47	D48
S13	D49	D50	D51	D52
S14	D53	D54	D55	D56
S15	D57	D58	D59	D60
S16	D61	D62	D63	D64
S17	D65	D66	D67	D68
S18	D69	D70	D71	D72
S19	D73	D74	D75	D76
S20	D77	D78	D79	D80
S21	D81	D82	D83	D84
S22	D85	D86	D87	D88
S23	D89	D90	D91	D92
S24	D93	D94	D95	D96
S25	D97	D98	D99	D100
S26	D101	D102	D103	D104

Output Pin	COM1	COM2	СОМЗ	COM4
S27	D105	D106	D107	D108
S28	D109	D110	D111	D112
S29	D113	D114	D115	D116
S30	D117	D118	D119	D120
S31	D121	D122	D123	D124
S32	D125	D126	D127	D128
S33	D129	D130	D131	D132
S34	D133	D134	D135	D136
S35	D137	D138	D139	D140
S36	D141	D142	D143	D144
S37	D145	D146	D147	D148
S38	D149	D150	D151	D152
S39	D153	D154	D155	D156
S40	D157	D158	D159	D160
S41	D161	D162	D163	D164
S42	D165	D166	D167	D168
S43	D169	D170	D171	D172
S44	D173	D174	D175	D176
S45	D177	D178	D179	D180
S46	D181	D182	D183	D184
S47	D185	D186	D187	D188
S48	D189	D190	D191	D192
S49	D193	D194	D195	D196
S50	D197	D198	D199	D200
S52	D201	D202	D203	D204
S53/OSCI	D205	D206	D207	D208

NOTE: This table assumes that pins S1/P1 to S4/P4 and S53/OSCI are configured for segment output.

For example, the table below lists the output states for the S21 output pin.

Display Data D81 D82 D83 D84					
		D84	Output Pin (S21) State		
0	0	0	0	The LCD segments corresponding to COM1, COM2, COM3, and COM4 are off.	
0	0	0	1	The LCD segment corresponding to COM4 is on.	
0	0	1	0	The LCD segment corresponding to COM3 is on.	
0	0	1	1	The LCD segments corresponding to COM3 and COM4 are on.	
0	1	0	0	The LCD segment corresponding to COM2 is on.	
0	1	0	1	The LCD segments corresponding to COM2 and COM4 are on.	
0	1	1	0	The LCD segments corresponding to COM2 and COM3 are on.	
0	1	1	1	The LCD segments corresponding to COM2, COM3, and COM4 are on.	
1	0	0	0	The LCD segment corresponding to COM1 is on.	
1	0	0	1	The LCD segments corresponding to COM1 and COM4 are on.	
1	0	1	0	The LCD segments corresponding to COM1 and COM3 are on.	
1	0	1	1	The LCD segments corresponding to COM1, COM3, and COM4 are on.	
1	1	0	0	The LCD segments corresponding to COM1 and COM2 are on.	
1	1	0	1	The LCD segments corresponding to COM1, COM2, and COM4 are on.	
1	1	1	0	The LCD segments corresponding to COM1, COM2, and COM3 are on.	
1	1	1	1	The LCD segments corresponding to COM1, COM2, COM3, and COM4 are on.	

Display Data and Output Pin Correspondence (1/3 Duty)

Output Pin	COM1	COM2	СОМЗ
S1/P1	D1	D2	D3
S2/P2	D4	D5	D6
S3/P3	D7	D8	D9
S4/P4	D10	D11	D12
S5	D13	D14	D15
S6	D16	D17	D18
S7	D19	D20	D21
S8	D22	D23	D24
S9	D25	D26	D27
S10	D28	D29	D30
S11	D31	D32	D33
S12	D34	D35	D36
S13	D37	D38	D39
S14	D40	D41	D42
S15	D43	D44	D45
S16	D46	D47	D48
S17	D49	D50	D51
S18	D52	D53	D54
S19	D55	D56	D57
S20	D58	D59	D60
S21	D61	D62	D63
S22	D64	D65	D66
S23	D67	D68	D69
S24	D70	D71	D72
S25	D73	D74	D75
S26	D76	D77	D78
S27	D79	D80	D81

Output pin	COM1	COM2	СОМЗ
S28	D82	D83	D84
S29	D85	D86	D87
S30	D88	D89	D90
S31	D91	D92	D93
S32	D94	D95	D96
S33	D97	D98	D99
S34	D100	D101	D102
S35	D103	D104	D105
S36	D106	D107	D108
S37	D109	D110	D111
S38	D112	D113	D114
S39	D115	D116	D117
S40	D118	D119	D120
S41	D121	D122	D123
S42	D124	D125	D126
S43	D127	D128	D129
S44	D130	D131	D132
S45	D133	D134	D135
S46	D136	D137	D138
S47	D139	D140	D141
S48	D142	D143	D144
S49	D145	D146	D147
S50	D148	D149	D150
S51/COM4	D151	D152	D153
S52	D154	D155	D156
S53/OSCI	D157	D158	D159

NOTE: This table assumes that pins S1/P1 to S4/P4, S51/COM4, and S53/OSCI are configured for segment output.

For example, the table below lists the output states for the S21 output pin.

	Display Data			
D61	D62	D63	Output Pin (S21) State	
0	0	0	The LCD segments corresponding to COM1, COM2, and COM3 are off.	
0	0	1	The LCD segment corresponding to COM3 is on.	
0	1	0	The LCD segment corresponding to COM2 is on.	
0	1	1	The LCD segments corresponding to COM2 and COM3 are on.	
1	0	0	The LCD segment corresponding to COM1 is on.	
1	0	1	The LCD segments corresponding to COM1 and COM3 are on.	
1	1	0	The LCD segments corresponding to COM1 and COM2 are on.	
1	1	1	The LCD segments corresponding to COM1, COM2, and COM3 are on.	

Output Waveforms (1/4-Duty 1/3-Bias Drive Scheme)

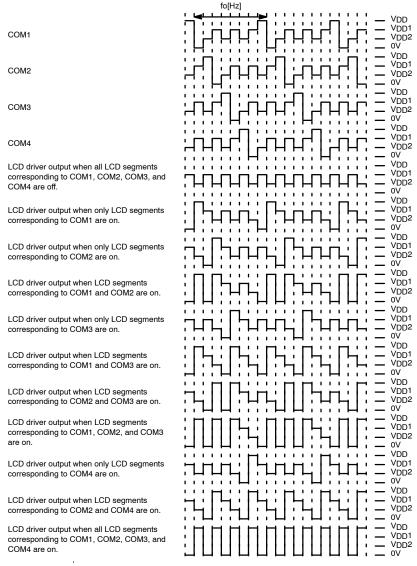


Figure 15.

C	ontrol Da	ta			
FC0) FC1 FC2		Internal Oscillator Operating Mode (The Control Data OC is 0, fosc = 300 [kHz] typ)	External Clock Operating Mode (The Control Data OC is 1 and EXF is 0, f _{CK} 1 = 300 [kHz] typ)	External Clock Operating Mode (The Control Data OC is 1 and EXF is 1, f _{CK} 2 = 38 [kHz] typ)
0	0	0	fosc/6144	f _{CK} 1/6144	f _{CK} 2/768
0	0	1	fosc/4608	f _{CK} 1/4608	f _{CK} 2/576
0	1	0	fosc/3072	f _{CK} 1/3072	f _{CK} 2/384
0	1	1	fosc/2304	f _{CK} 1/2304	f _{CK} 2/288
1	0	0	fosc/1536	f _{CK} 1/1536	f _{CK} 2/192
1	0	1	fosc/1152	f _{CK} 1/1152	f _{CK} 2/144
1	1	0	fosc/768	f _{CK} 1/768	f _{CK} 2/96

NOTE: When is setting (FC0,FC1,FC2) = (1,1,1), the frame frequency is same as frame frequency at the time of the (FC0,FC1,FC2) = (0,1,0) setting (fosc/3072, $f_{CK}1/3072$, $f_{CK}2/384$).

Output Waveforms (1/3-Duty 1/3-Bias Drive Scheme)

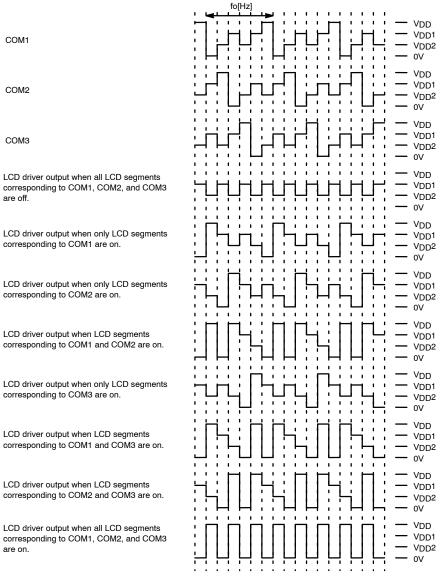


Figure 16.

C	ontrol Da	ta	Frame Frequency fo [Hz]			
FC0	FC1	FC2	Internal Oscillator Operating Mode (The Control Data OC is 0, fosc = 300 [kHz] typ)	External Clock Operating Mode (The Control Data OC is 1 and EXF is 0, f _{CK} 1 = 300 [kHz] typ)	External Clock Operating Mode (The Control Data OC is 1 and EXF is 1, f _{CK} 2 = 38 [kHz] typ)	
0	0	0	fosc/6144	f _{CK} 1/6144	f _{CK} 2/768	
0	0	1	fosc/4608	f _{CK} 1/4608	f _{CK} 2/576	
0	1	0	fosc/3072	f _{CK} 1/3072	f _{CK} 2/384	
0	1	1	fosc/2304	f _{CK} 1/2304	f _{CK} 2/288	
1	0	0	fosc/1536	f _{CK} 1/1536	f _{CK} 2/192	
1	0	1	fosc/1152	f _{CK} 1/1152	f _{CK} 2/144	
1	1	0	fosc/768	f _{CK} 1/768	f _{CK} 2/96	

NOTE: When is setting (FC0,FC1,FC2) = (1,1,1), the frame frequency is same as frame frequency at the time of the (FC0,FC1,FC2) = (0,1,0) setting (fosc/3072, f_{CK}1/3072, f_{CK}2/384).

Display Control and the INH Pin

Since the LSI internal data (1/4 duty: the display data D1 to D208 and the control data, 1/3 duty: the display data D1 to D159 and the control data) is undefined when power is first applied, applications should set the $\overline{\text{INH}}$ pin low at the same time as power is applied to turn off the display (This sets the S1/P1 to S4/P4, S5 to S50, COM1 to COM3, COM4/S51, S52, and S53/OSCI pins to the V_{SS} level.) and during this period send serial data from the controller. The controller should then set the $\overline{\text{INH}}$ pin high after the data transfer has completed. This procedure prevents meaningless display at power on. (See Figure 17 and Figure 18.)

• 1/4 Duty

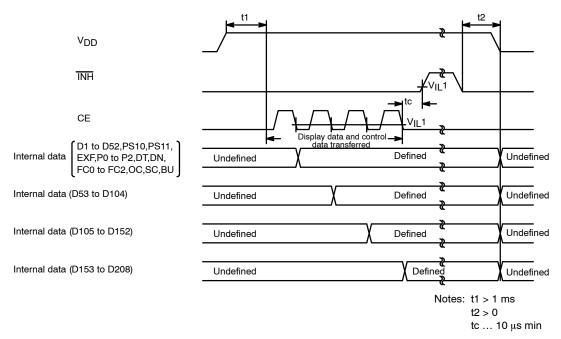


Figure 17.

• 1/3 Duty

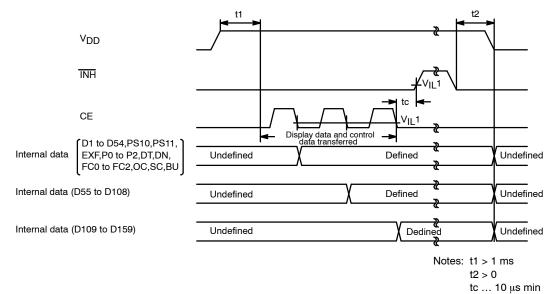


Figure 18.

Notes on Controller Transfer of Display Data

When using the LC75829 in 1/4 duty, applications transfer the display data (D1 to D208) in four operations, and in 1/3 duty, they transfer the display data (D1 to D159) in three operations. In either case, applications should transfer all of the display data within 30 ms to maintain the quality of displayed image.

S53/OSCI Pin Peripheral Circuit

1. Internal oscillator operating mode (control data OC = 0)

Connect the S53/OSCI pin to the LCD panel when the internal oscillator operating mode is selected.

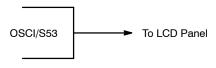
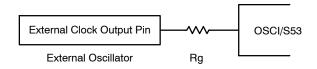



Figure 19.

2. External clock operating mode (control data OC = 1)

When the external clock operating mode is selected, insert a current protection resistor Rg (2.2 to 22 k Ω) between the S53/OSCI pin and external clock output pin (external oscillator). Determine the value of the resistance according to the allowable current value at the external clock output pin. Also make sure that the waveform of the external clock is not heavily distorted.

NOTE: Allowable current value at external clock output pin > (VDD / Rg)

Figure 20.

3. Unused pin treatment

When the S53/OSCI pin is not to be used, select the internal oscillator operating mode (setting control data OC to 0) to keep the pin open.

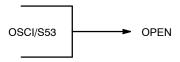


Figure 21.

Sample Applications Circuit 1

1/4 Duty, 1/3 Bias

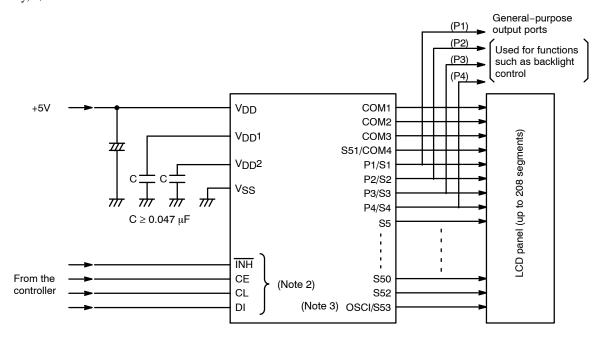
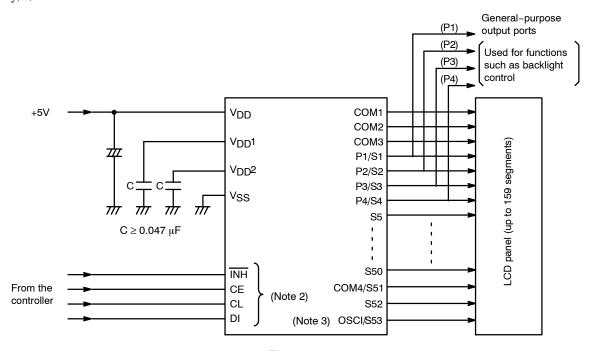
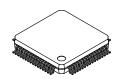


Figure 22.

Sample Applications Circuit 2

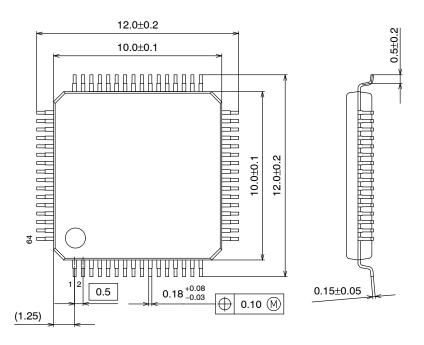
1/3 Duty, 1/3 Bias

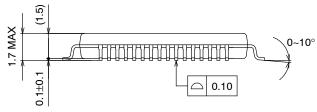


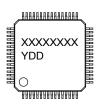

Figure 23.

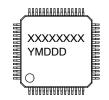
- 2. The pins to be connected to the controller (CE, CL, DI, $\overline{\text{INH}}$) can handle 3.3 V or 5 V.
- Connect the S53/OSCI pin to the LCD panel in the internal oscillator operating mode and insert a current protection resistor Rg (2.2 to 22 kΩ) between the S53/OSCI pin and external clock output pin (external oscillator) in the external clock operating mode (see "S53/OSCI Pin Peripheral Circuit").

ORDERING INFORMATION


Device	Package	Shipping (Qty / Packing) [†]
LC75829PW-H	SPQFP64 10x10 / SQFP64 (Pb–Free / Halogen Free)	800 / Tray JEDEC
LC75829PWH-H	SPQFP64 10x10 / SQFP64 (Pb–Free / Halogen Free)	50 / Tray Foam


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


SPQFP64 10x10 / SQFP64 CASE 131AK ISSUE A


DATE 12 NOV 2013

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

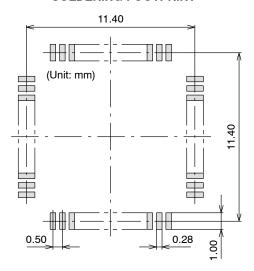
Y = Year

DD = Additional Traceability Data

XXXXX = Specific Device Code

Y = Year

M = Month


DDD = Additional Traceability Data

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

DOCUMENT NUMBER:	98AON79379E	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SPQFP64 10X10 / SQFP64		PAGE 1 OF 2

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOLDERING FOOTPRINT*

NOTE: The measurements are not to guarantee but for reference only.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON79379E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SPQFP64 10X10 / SQFP64		PAGE 2 OF 2

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LCD Drivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

LC75836WH-E CD4056BE LC75829PW-H LC75852W-E LC79430KNE-E LC79431KNE-E FAN7317BMX LC75839PW-H LC75884W-E LC75814VS-TLM-E MAX25520ATEC/V+ MAX25520ATEB/VY+ BU9795AFV-E2 PCF8566T/1.118 TPS65132A0YFFR

BU9795AKV-E2 34801000 BU97510CKV-ME2 BU97520AKV-ME2 ICL7136CM44Z BL55070 BL55066 MAX1605ETT+T

MAX16928BGUP/V+ ICL7129ACPL+ MAX131CMHD MAX138CMH+D MAX1491CAI+ MAX1518BETJ+ MAX1606EUA+

MAX138CQH+TD MAX25520ATEB/V+ MAX16929AGUI/V+ MAX16929CGUI/V+ MAX16929DGUI/V+ MAX8570ELT+T

MAX8570EUT+T MAX8571EUT+T MAX8575EUT+T MAX8795AGCJ/V+ MAX138CPL+ AY0438-I/L AY0438/L HV66PG-G

HV881K7-G TC7106CKW TC7106CPL TC7116CPL TC7126CLW TC7126CPL