LC79401KNE

CMOS LSI

Dot-Matrix LCD Drivers

ON Semiconductor ${ }^{\text {® }}$
http://onsemi.com

Overview

The LC79401KNE is a 80-outputs segment driver LSI for graphic dot-matrix liquid crystal display systems. The LC79401KNE latches 80 bits of display data sent from a controller using a 4-bit parallel transfer technique and generates LCD drive signals. When combined as a kit with common driver, either the LC79430KNE (QIP100E), the LC79401KNE can drive large screen LCD panels.

Features

- Incorporates LCD drive circuits for 80 bits of display.
- Supports display duties from $1 / 64$ to $1 / 256$
- The provision of a chip disable pin supports power reduction in large-scale panels.
- Allows external provision of the bias power supply
- Operating supply voltage/operating temperature

VDD (logic block) : 2.7 to $5.5 \mathrm{~V} /-20$ to $+85^{\circ} \mathrm{C}$
VDD-VEE (LCD block) : 12 to $32 \mathrm{~V} /-20$ to $+85^{\circ} \mathrm{C}$

- Data transfer clock : 6.0MHz (max), bidirectional shifting supported
- Data input : 4-bit parallel input
- CMOS process
- 100-pin flat plastic package (QIP100E)

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}, \mathrm{V}$ SS $=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	unit
Maximum supply voltage (Logic)	$\mathrm{V}_{\mathrm{DD}} \max$		-0.3 to +7.0	V
Maximum supply voltage (LCD)	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}} \max$	${ }^{*} 1$	0 to 35	V
Maximum input voltage	$\mathrm{V}_{1} \max$		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

Note *1 $\mathrm{V}_{\mathrm{DD}} \geq \mathrm{V} 1>\mathrm{V} 3>\mathrm{V} 4>\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{DD}}-\mathrm{V} 3 \leq 7 \mathrm{~V}, \mathrm{~V} 4-\mathrm{V}_{\mathrm{EE}} \leq 7 \mathrm{~V}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Ranges at $\mathrm{Ta}=-20$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions		min	typ	max	unit
Supply voltage (Logic)	$\mathrm{V}_{\text {DD }}$			2.7		5.5	V
Supply voltage (LCD)	$\mathrm{V}_{\text {DD }} \mathrm{V}_{\text {EE }}$	*2, 3		12		32	V
Input high level voltage	V_{IH}	$\frac{\text { DI1 to DI4, CP, LOAD, CDI, R/L, M, }}{\text { DISPOFF }}$		$0.8 \mathrm{~V}_{\text {DD }}$			V
Input low level voltage	$\mathrm{V}_{\text {IL }}$	$\frac{\text { DI1 to DI4, CP, LOAD, CDI, R/L, M, }}{\text { DISPOFF }}$				$0.2 \mathrm{~V}_{\text {DD }}$	V
CP Shift clock	${ }^{\text {f }}$ CP	CP				6.0	MHz
CP pulse width	${ }^{\text {tw }}$ W	CP		50			ns
LOAD pulse width	${ }^{\text {t WL }}$	LOAD		50			ns
Setup time	${ }^{\text {t SETUP }}$	DI1 to DI4 \rightarrow CP		30			ns
Hold time	thold	DI1 to DI4 \rightarrow CP	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 4.5 V	40			ns
			$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	30			ns
$\mathrm{CP} \rightarrow$ LOAD	${ }^{\mathrm{t}} \mathrm{CL}$	CP \rightarrow LOAD		80			ns
$\text { LOAD } \rightarrow \text { CP }$	tLC1	LOAD \rightarrow CP		110			ns
	tLC2	$\text { LOAD } \rightarrow \mathrm{CP}$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 4.5 V	30			ns
			$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	15			ns
CP and LOAD rise time	t_{R}	CP, LOAD				*4	ns
CP and LOAD fall time	${ }_{\text {t }}$	CP, LOAD				*4	ns

Note *2 $\mathrm{V}_{\mathrm{DD}} \geq \mathrm{V} 1>\mathrm{V} 3>\mathrm{V} 4>\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{DD}}-\mathrm{V} 3 \leq 7 \mathrm{~V}$, V4-VEE $\leq 7 \mathrm{~V}$
*3 When the power is turned on, either the logic system power must be turned on before the LCD drive system power or else they must both be turned on at the same time. When the power is turned off, either the LCD drive system power must be turned off before the logic system power, or else both must be turned off at the same time.
*4 The CP and LOAD rise time (t_{R}) and the CP and LOAD fall time (t_{F}) must satisfy equations (1) and (2) below at the same time.
(1) $\mathrm{t}_{\mathrm{R}}, \mathrm{tF}<\frac{1}{2 \mathrm{f}_{\mathrm{CP}}}-\mathrm{tWC}$
(2) $\mathrm{tR}, \mathrm{tF}<50 \mathrm{~ns}$

LC79401KNE

Electrical Characteristics at $\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V

Parameter	Symbol	Conditions	min	typ	max	unit
Input high level current	${ }^{\prime} \mathrm{H}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$, LOAD, CP, CDI, R/L, DI1 to DI4, M, DISPOFF			1	$\mu \mathrm{A}$
Input low level current	IIL	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{SS}}$, LOAD, CP, CDI, R/L, DI1 to DI4, M, DISPOFF	-1			$\mu \mathrm{A}$
Output high level voltage	V_{OH}	$\mathrm{l}^{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{CDO}$	$\mathrm{V}_{\text {DD }}-0.4$			V
Output low level voltage	V_{OL}	$\mathrm{I}^{\mathrm{OL}}=400 \mu \mathrm{~A}, \mathrm{CDO}$			0.4	V
Driver on resistance	$\mathrm{R}_{\mathrm{ON}}(1)$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V},\left\|\mathrm{~V}_{\mathrm{DE}}-\mathrm{V}_{\mathrm{O}}\right\|=0.5 \mathrm{~V} \text { : } \\ & \mathrm{O} 1 \text { to } \mathrm{O} 80 * 5 \end{aligned}$		0.6	1.5	$k \Omega$
	R $\mathrm{ON}(2)$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=20 \mathrm{~V},\left\|\mathrm{~V}_{\mathrm{DE}}-\mathrm{V}_{\mathrm{O}}\right\|=0.5 \mathrm{~V} \text { : } \\ & \mathrm{O} 1 \text { to } \mathrm{O} 80 * 5 \end{aligned}$		0.7	2.0	$k \Omega$
Standby current drain	IST	$\begin{aligned} & \mathrm{CDI}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}, \\ & \mathrm{CP}=6.0 \mathrm{MHz}, \text { Output unloaded: } \mathrm{V}_{\mathrm{SS}} \end{aligned}$			200	$\mu \mathrm{A}$
Operating current drain	ISS *6	$V_{D D}{ }^{-} \mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}, \mathrm{CP}=6 \mathrm{MHz}$, LOAD $=14 \mathrm{kHz}, \mathrm{M}=35 \mathrm{~Hz}$: V_{SS}			4.0	mA
	${ }^{1} \mathrm{EE}$ *7	$V_{D D}-V_{E E}=30 \mathrm{~V}, \mathrm{CP}=6 \mathrm{MHz}$, LOAD $=14 \mathrm{kHz}, \mathrm{M}=35 \mathrm{~Hz}$: V_{EE}			0.5	mA
Input capacitance	C_{1}	$\mathrm{f}=6.0 \mathrm{MHz}$; CP		8		pF

Note *5 VDE = one of V1, V3, V4 or $\mathrm{V}_{\mathrm{EE}}, \mathrm{V} 1=\mathrm{V}_{\mathrm{DD}}, \mathrm{V} 3=15 / 17\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right), \mathrm{V} 4=2 / 17\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right)$
*6 ISS is the current flowing from VDD to VSS
*7 IEE is the current flowing from VDD to VEE

Switching Characteristics at $\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{VDD}=2.7$ to 5.5 V

Parameter	Symbol	Conditions		min	typ	max	unit
Output delay time 1	${ }^{\text {t }}$ 1	Load=15pF: CDO	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 4.5 V			100	ns
			$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V			80	ns
Output delay time 2	${ }^{\text {t }}$ 2	Load=15pF: CDO	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 4.5 V			100	ns
			$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V			80	ns

Package Dimensions

unit:mm (typ)
3151A

Pin Assignment

Top view

Equivalent Circuit Block Diagram

LC79401KNE
Pin Function

Pin No	Symbol	I/O	Function							
90	$\mathrm{V}_{\text {DD }}$	Supply	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$: Logic power supply $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$: LCD drive circuit power supply							
88	$\mathrm{V}_{\text {SS }}$									
85	V_{EE}									
82	V1	Supply	LCD drive level power supply V1, V_{EE} : Selected level V3,V4 : Unselected level							
83	V3									
84	V4									
99	CP	1	Display data acquisition clock (falling edge trigger)							
87	LOAD	1	Display data latch clock (falling edge trigger) The display data LCD drive signal is output on the falling edge.							
$\begin{aligned} & 95 \\ & 96 \\ & 97 \\ & 98 \end{aligned}$	DI4 DI3 DI2 DII	1	Display data	LCD drive output			LCD display			
			H	Selected level			On			
			L	Unselected level			Off			
91	R/L	1	Control pin that inverts the data output destination							
			R/L \quad Data input	Number of clock						
				1	2	3	...	18	19	20
			DI1	077	073	069	...	O9	O5	O1
			DI2	078	074	070	...	010	O6	O2
			DI3	079	075	071	...	011	07	O3
			DI4	O80	076	072	...	012	O8	O4
			DI1	O4	08	012	...	072	076	080
			DI2	O3	07	011	...	071	075	079
			DI3	O2	06	O 10	...	070	074	078
			DI4	01	O5	O9	...	069	073	077
86	M	1	LCD drive output alternation signal							
81	CDI	1	Chip disable pin High level : Data is not acquired. Low level : Data is acquired							
100	CDO	0	Connect to the CDI pin on the next chip when cascade connection is used.							
89	$\overline{\text { DISPOFF }}$	I	Input that controls the O 1 to O 80 output pins. During periods when this pin Is low, the O 1 to O 80 output pins output the V1 level. See the truth table.							
1 to 80	O1 to O80	0	LCD drive outputs The output level are determined by the combination of the output the data, The M signal, and The $\overline{\text { DISPOFF }}$ pin as shown in the table.							
			M	Q		DISPOFF		Output		
			L	L		H		V3		
			L	H		H		V1		
			H	L		H		V4		
			H	H		H		V_{EE}		
			*			L		V1		
			Note : don't care (fixed at high or low)							
92	NC	-	Must be left open.							
93	NC									
94	NC									

Application Example (LC79401KNE/LC79430KNE)

Switching Characteristics Diagram

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LCD Drivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LC75836WH-E CD4056BE LC75829PW-H LC75852W-E LC79430KNE-E LC79431KNE-E FAN7317BMX LC75839PW-H LC75884W-
E LC75814VS-TLM-E MAX25520ATEC/V + MAX25520ATEB/VY + BU9795AFV-E2 PCF8566T/1.118 TPS65132A0YFFR
BU9795AKV-E2 34801000 BU97510CKV-ME2 BU97520AKV-ME2 ICL7136CM44Z BL55070 BL55066 MAX1605ETT+T MAX16928BGUP/V+ ICL7129ACPL+ MAX131CMHD MAX138CMH+D MAX1491CAI + MAX1518BETJ+ MAX1606EUA+ MAX138CQH+TD MAX25520ATEB/V+ MAX16929AGUI/V+ MAX16929CGUI/V+ MAX16929DGUI/V+ MAX8570ELT+T MAX8570EUT+T MAX8571EUT+T MAX8575EUT+T MAX8795AGCJ/V+ MAX138CPL+ AY0438-I/L AY0438/L HV66PG-G $\underline{\text { HV881K7-G TC7106CKW TC7106CPL TC7116CPL TC7126CLW TC7126CPL }}$

