LC87F2608A

CMOS IC
8K-byte FROM and 512-byte RAM integrated

8-bit 1-chip microcontroller

ON Semiconductor ${ }^{\text {® }}$

http:/lonsemi.com

Overview

The LC87F2608A is an 8-bit microcontroller that, centered around a CPU running at a minimum bus cycle time of 100 ns , integrates on a single chip a number of hardware features such as 8 K -byte flash ROM, 512-byte RAM, an on-chip debugger, two sophisticated 16-bit timers/counters (may be divided into 8-bit timers), a synchronous SIO interface, a high-speed 12-bit PWM, two high-speed pulse width/period counters, a 3-channel AD converter with 12-/8-bit resolution selector, an analog comparator, a watchdog timer, an internal reset circuit, a system clock frequency divider, and a 16 -source 10 -vector interrupt feature.

Features

- Flash ROM
- 8192×8 bits (LC87F2608A)
- Capable of on-board-programming with wide range of voltage source (3.0 to 5.5 V).
- Block-erasable in 128-byte units

■ RAM

- 512×9 bits (LC87F2608A)
- Package Form
- MFP10SK: Lead-/Halogen-free type
- MFP14S (for debugging only): Lead-free type
- MFP10S: Lead-/Halogen-free type (discontinued)

Package Dimensions

unit : mm (typ)
3111A
(for debugging only)

Package Dimensions
unit : mm (typ)
3420

Package Dimensions
unit: mm (typ)
3086B (discontinued)

[^0]■ Minimum Bus Cycle Time (Note1)

- 100 ns (10 MHz) $\mathrm{VDD}_{\mathrm{D}}=2.7$ to 5.5 V (Note2)

■ Minimum Instruction Cycle Time

- 300ns (10 MHz) $\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V (Note2)

Note1: The bus cycle time here refers to the ROM read speed.
Note2: Use this product in a voltage range of 3.0 to 5.5 V because the minimum release voltage (PORRL) of the power-on reset (POR) circuit is $2.87 \mathrm{~V} \pm 0.12 \mathrm{~V}$.

- Ports
- I/O ports

Ports whose I/O direction can be designated in 1 bit units: 7 (P10 to P12, P30 to P33)

- Reset pins: $1(\overline{\mathrm{RES}})$
- Power pins: $2\left(\mathrm{~V}_{\mathrm{SS}} 1, \mathrm{~V}_{\mathrm{DD}} 1\right)$

■ Timers

- Timer 0: 16 -bit timer/counter with a capture register

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) $\times 2$ channels
Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)
+8 -bit counter (with an 8 -bit capture register)
Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)
Mode 3: 16-bit counter (with a 16-bit capture register)

- Timer 1: 16-bit timer/counter

Mode 0: 8-bit timer with an 8-bit prescaler +8 -bit timer/counter with an 8-bit prescaler
Mode 2: 16-bit timer/counter with an 8-bit prescaler
■ Serial Interface

- SIO7: 8-bit synchronous serial interface

1) LSB first/MSB first mode selectable
2) Built-in 8 -bit baudrate generator (maximum transfer clock cycle $=4 / 3$ tCYC)

■ High-speed 12-bit PWM

- System clock/high-speed RC oscillation clock (20 MHz or 40 MHz) operation selectable
- Duty/period programmable
- Continuous PWM output/specific count PWM output (automatic stop) selectable

High-speed Pulse Width/Period Counter

- HCT1: High-speed pulse width/period counter 1

1) System clock/high-speed RC oscillation clock (20 MHz or 40 MHz) operation selectable
2) H-level width/L-level width/period measurement modes selectable
3) Input triggering noise filter

- HCT2: High-speed pulse width/period counter 2

1) System clock/high-speed RC oscillation clock (20 MHz or 40 MHz) operation selectable
2) Can measure both L-level width and period simultaneously.
3) Input triggering noise filter
4) Input trigger selectable (from 3 signals, i.e., P11/HCT2IN, P31/HCT2IN, and analog comparator output)

■ AD Converter: 12 bits $\times 3$ channels

- 12-/8-bit AD converter resolution selectable
- Analog Comparator
- Sends output to the P32/CMPO port (polarity selectable).
- Edge detection function (shared with INTC and also allows the selection of the noise filter function)
- Watchdog Timer
- Can generate the internal reset signal on a timer overflow monitored by the WDT-dedicated low-speed RC oscillation clock (30 kHz).
- Allows selection of continue, stop, or hold mode operation of the counter on entry into the HALT/ HOLD mode.

Interrupt Source Flags

- 16 sources, 10 vector addresses

1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control.

Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
2) When interrupt requests to two or more vector addresses occur at the same time,
the interrupt of the highest level takes precedence over the other interrupts.
For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	
1	00003 H	X or L	Interrupt Source
2	0000 BH	X or L	INTB
3	00013 H	H or L	INTC/TOL/INTE
4	0001 BH	H or L	INTD/INTF
5	00023 H	H or L	TOH/SIO7
6	0002 BH	H or L	T1L/T1H
7	00033 H	H or L	HCT1
8	0003 BH	H or L	HCT2
9	00043 H	H or L	ADC/HPWM automatic stop/HPWM cycle
10	0004 BH	H or L	None

- Priority levels X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.

Subroutine Stack Levels: 256 levels maximum (The stack is allocated in RAM.)

■ High-speed Multiplication/Division Instructions

- 16 bits $\times 8$ bits (5 tCYC execution time)
- 24 bits $\times 16$ bits (12 tCYC execution time)
- 16 bits $\div 8$ bits (8 tCYC execution time)
- 24 bits $\div 16$ bits (12 tCYC execution time)

■ Oscillation Circuits

- Medium speed RC oscillation circuit (internal): For system clock (1MHz)
- Low speed RC oscillation circuit (internal): For watchdog timer (30 kHz)
- High speed RC oscillation circuit (internal): For system clock (20 MHz or 40 MHz)

1) 2 source oscillation frequencies $(20 \mathrm{MHz}$ or 40 MHz) selectable for the high-speed RC oscillation circuit by optional configuration.

System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from $300 \mathrm{~ns}, 600 \mathrm{~ns}, 1.2 \mu \mathrm{~s}, 2.4 \mu \mathrm{~s}, 4.8 \mu \mathrm{~s}, 9.6 \mu \mathrm{~s}, 19.2 \mu \mathrm{~s}, 38.4 \mu \mathrm{~s}$, and $76.8 \mu \mathrm{~s}$ (when high speed RC oscillation is selected for system clock.).

Internal Reset Circuit

- Power-on reset (POR) function

1) POR reset is generated only at power-on time.
2) The POR release level can be selected from 3 levels ($2.87 \mathrm{~V}, 3.86 \mathrm{~V}$, and 4.35 V) by optional configuration.

- Low-voltage detection reset (LVD) function

1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
2) The use or disuse of the LVD function and the low voltage threshold level (3 levels: 2.81V, 3.79V, and 4.28V) can be selected by optional configuration.

Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.

1) Oscillation is not halted automatically.
2) There are the following three ways of resetting the HALT mode.
(1) Setting the Reset pin to the low level
(2) Generating a reset signal via the watchdog timer or brown-out detector
(3) Having an interrupt generated

- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.

1) The medium- and high-speed RC oscillation circuits automatically stop operation.
2) There are the following four ways of resetting the HOLD mode.
(1) Setting the Reset pin to the low level
(2) Generating a reset signal via the watchdog timer or brown-out detector
(3) Setting at least one of the INTA, INTB, INTC, INTD, INTE, and INTF pins to the specified level (INTA and INTB HOLD mode reset is available only when level detection is set.)
(4) Applying input signals to the IN+ and IN- pins so that the analog comparator output is set to the specified level (when the analog comparator output is assigned to the INTC input)

■ On-chip Debugger Function

- Supports software debugging with the IC mounted on the target board (selectable from 3 series).

1) LC87D2708A : All terminal function of LC87F2608A can be used.
2) LC87F2708A : All terminal function of LC87F2608A can be used. The debug feature is limited.
3) LC87F2608A : The debugger terminal function when an On-chip debugger is used cannot be used. The debug feature is limited.

- Two channels of on-chip debugger pins are available (LC87F2608A).

Data Security Function (Note3)

- Protects the program data stored in flash memory from unauthorized read or copy.

Note3: This data security function does not necessarily provide absolute data security.

Development Tools

- On-chip debugger: 1) TCB87-Type B + LC87D2708A or LC87F2708A

2) TCB87-Type B + LC87F2608A
3) TCB87-Type C (3 wire version) + LC87D2708A or LC87F2708A
4) TCB87-Type C (3 wire version) + LC87F2608A

- Programming Board

Package	Programming Board
MFP10S	
MFP10SK	W87F27M-DBG
MFP14S	

■ Flash ROM Programming Board

Maker		Model	Version	Device
Flash Support Group, Inc. (FSG) + Our company (Note 4)	In-circuit Programmer	AF9101/AF9103 (Main body) (FSG models)	Rev.01.01 or later	LC87F2608A
		SIB87 (Inter Face Driver) (Our company model)		
Our company	Single/Gang Programmer	SKK-DBG Type B (Sanyo FWS)	Application Version 1.04 or later Chip Data Version 2.10 or later	LC87F2608A
	In-circuit/ Gang Programmer			

For information about AF-series:
Flash Support Group, Inc.
TEL: +81-53-459-1050
E-mail: sales@j-fsg.co.jp
Note4: On-board-programmer from FSG (AF9101/AF9103) and serial interface driver from Our company (SIB87) together can give a PC-less, standalone on-board-programming capabilities.

Pin Assignment

MFP10S "Lead-/Halogen-free type" MFP10SK "Lead-/Halogen-free type"

MFP10S MFP10SK	NAME
1	P31/INTB/HCT2IN/DBGP01
2	P30/INTA/HCT1IN/DBGPX0
3	$\overline{\mathrm{RES}}$
4	P10/SO7/INTE/AN0/DBGP02
5	$\mathrm{V}_{\text {SS }} 1$
6	P12/SCK7/INTF/IN-/AN2
7	P11/SI7/SB7/INTE/IN+/HCT2IN/AN1
8	P33/INTD/HPWM/DBGP12
9	P32/INTC/CMPO/DBGP11
10	$\mathrm{V}_{\mathrm{DD}}{ }^{1}$

MFP14S (for debugging only) "Lead-free type"

MFP14S	NAME
1	P31/INTB/HCT2IN/DBGP01
2	P30/INTA/HCT1IN/DBGPX0
3	$\overline{\text { RES }}$
4	P10/SO7/INTE/AN0/DBGP02
5	V SS1 2
6	NC
7	DBGP22
8	DBGP21
9	DBGP20
10	P12/SCK7/INTF/IN-/AN2
11	P33/INI7/SB7/INTE/IN+/HCT2IN/AN1
12	P32/INTC/CMPO/DBGP11
13	VDD1
14	

System Block Diagram

Pin Description

Pin Name	I/O	Description						Option
$\mathrm{V}_{\text {SS }} 1$		- power supply pin						No
$\mathrm{V}_{\mathrm{DD}} 1$		+ power supply pin						No
PORT1 P10 to P12	I/O	- 3-bit I/O port - I/O specifiable in 1-bit units - Pull-up resistors can be turned on and off in 1-bit units - Multiplexed pins P10: SIO7 data output/ INTE input/HOLD release input/timer 1 event input/ timer OL capture input/timer 0 H capture input P11: SIO7 data input/bus I/O/ high-speed pulse width/period counter 2 inpu/t INTE input/HOLD release input/timer 1 event input/ timer OL capture input/timer OH capture input P12: SIO7 clock I/O/ INTF input/HOLD release input/timer 1 event input/ timer OL capture input/timer OH capture input AD converter input ports: AN0 to AN2 (P10 to P12) Analog comparator input ports: IN+, IN- (P11, P12) On-chip debugger pin 1: DBGP02 (P10) - Interrupt acknowledge type						Yes
PORT3 P30 to P33	I/O	- 4-bit I/O port - I/O specifiable in 1-bit units - Pull-up resistors can be turned on and off in 1-bit units - Multiplexed pins P30: INTA input/HOLD release input/timer 0L capture input/ high-speed pulse width/period counter 1 input P31: INTB input/HOLD release input/timer 0H capture input/ high-speed pulse width/period counter 2 input P32: INTC input/HOLD release input/timer 0 event input/ timer OL capture input/analog comparator output P33: INTD input/HOLD release input/timer 0 event input/ timer 0 H capture input/high-speed PWM output On-chip debugger pin 1: DBGPX0 to DBGP01 (P30 to P31) On-chip debugger pin 2: DBGPX0 to DBGP12 (P30, P32 to P33) - Interrupt acknowledge type						Yes
$\overline{\mathrm{RES}}$	I/O	External res	internal					No

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.
Data can be read into any input port even if it is in the output mode.

Port Name	Option Selected in Units of	Option Type	Output Type	Pull-up Resistor
P10 to P12	1 bit	1	CMOS	Programmable
		2	N-channel open drain	Programmable
P30 to P33	1 bit	1	CMOS	Programmable
		2	N-channel open drain	Programmable

On-chip Debugger Pin Processing

For the processing of the on-chip debugger pins, refer to the separately available documents entitled "RD87 On-chip Debugger Installation" and "LC872000 Series On-chip Debugger Pin Processing."

Recommended Unused Pin Connections

Pin Name	Recommended Unused Pin Connections	
	Board	Software
P10 to P12	OPEN	Set output low
P30 to P33	OPEN	Set output low

User Options

Option Name	Option Type	Flash Version	Option Switched in Unit of	Description
Port output type	P10 to P12	enable	1bit	CMOS
				N -channel open drain
	P30 to P33	enable	1bit	CMOS
				N -channel open drain
Program start address	-	enable	-	00000H
				01E00H
Brown-out detector reset function	Brown-out detector function	enable	-	Enable: Used
				Disable: Not used
	Brown-out trip level	enable	-	3 levels
Power-on-reset function	Power-on-reset level	enable	-	3 levels
High-speed RC oscillator circuit	Oscillation frequency	enable	-	20 MHz
				40 MHz
Package type	-	enable	-	MFP10S: LC87F2608A
				MFP14S: Debugged by using LC87D2708A or LC87F2708A

LC87F2608A
Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{SS} 1=0 \mathrm{~V}$

Parameter		Symbol	Pin/Remarks	Conditions		Specification				
		$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$			min	typ	max	unit		
Maximum supply voltage			$V_{\text {DD }}$ max	$V_{D D 1}$			-0.3	to	+6.5	V
Input voltage		V_{1}	$\overline{\mathrm{RES}}$			-0.3	to	$\mathrm{V}_{\text {DD }}+0.3$		
Input/output voltage		V_{10}	- Port 1 - Port 3			-0.3	to	$V_{\text {DD }}{ }^{+0.3}$		
	Peak output current	${ }^{\mathrm{I} \mathrm{OPH}^{(1)}}$	Port 1	- CMOS output selected - Per applicable pin		-7.5			mA	
		${ }^{1} \mathrm{OPH}^{(2)}$	Port 3	- CMOS output selected - Per applicable pin		-10				
	Mean output current (Note 1-1)	${ }^{\text {OMMH }}{ }^{(1)}$	Port 1	- CMOS output selected - Per applicable pin		-5				
		${ }^{\text {OMMH }}{ }^{(2)}$	Port 3	- CMOS output selected - Per applicable pin		-7.5				
	Total output current	${ }^{\text {I }} \mathrm{OAH}^{(1)}$	- Port 10 - Ports 30, 31	Total of currents at all applicable pins		-20				
		${ }^{\Sigma} \mathrm{IOAH}^{(2)}$	- Ports 11, 12 - Ports 32, 33	Total of currents at all applicable pins		-20				
		${ }^{\Sigma 1} \mathrm{OAH}^{(3)}$	- Port 1 - Port 3	Total of currents at all applicable pins		-35				
	Peak output current	IOPL (1)	Port 1	Per applicable pin				15		
		IOPL (2)	Port 3	Per applicable pin				10		
	Mean output current (Note 1-1)	IOML (1)	Port 1	Per applicable pin				10		
		IOML (2)	Port 3	Per applicable pin				7.5		
	Total output current	${ }^{\Sigma 1} \mathrm{OAL}^{(1)}$	- Port 10 - Ports 30, 31	Total of currents at all applicable pins				25		
		${ }^{\Sigma 1} \mathrm{OAL}^{(2)}$	- Ports 11, 12 - Ports 32, 33	Total of currents at all applicable pins				35		
		$\Sigma_{\text {IOAL }}(3)$	- Port 1 - Port 3	Total of currents at all applicable pins				55		
Power dissipation		Pd max(1)	MFP10S	- $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ - Independent package				100	mW	
		Pd max(2)		- $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ - Mounted on thermal test board (Note 1-2)				237		
		Pd max(3)	MFP10SK	- $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ - Independent package				100		
		$\operatorname{Pd} \max (4)$		- $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ - Mounted on thermal test board (Note 1-2)				237		
Operating ambient temperature		Topr				-40	to	+85	${ }^{\circ} \mathrm{C}$	
	rage ambient perature	Tstg				-55	to	+125		

Note 1-1: Mean output current refers to the average of output currents measured for a period of 100 ms .
Note 1-2: Thermal test board used conforms to SEMI (size: $76.1 \times 114.3 \times 1.6 \mathrm{tmm}$, glass epoxy board).

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating
Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

LC87F2608A
Allowable Operating Conditions at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}$ SS $1=0 \mathrm{~V}$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
Operating supply voltage (Note 2-1)	$V_{D D}$	$V_{D D 1}$	$0.272 \mu \mathrm{~s} \leq \mathrm{tCYC} \leq 100 \mu \mathrm{~s}$		2.7		5.5	V
Memory sustaining supply voltage	V_{HD}	$V_{D D 1}$	RAM and register contents sustained in HOLD mode		2.0		5.5	
High level input voltage	$\mathrm{V}_{\mathrm{IH}}(1)$	- Port 1 - Port 3	Output disabled	2.7 to 5.5	$\begin{array}{r} 0.3 \mathrm{~V}_{\mathrm{DD}} \\ +0.7 \\ \hline \end{array}$		V_{DD}	
	$\mathrm{V}_{\mathrm{IH}}(2)$	$\overline{\text { RES }}$		2.7 to 5.5	$0.75 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	
Low level input voltage	$\mathrm{V}_{\text {IL }}(1)$	- Port 1 - Port 3	Output disabled	4.0 to 5.5	$\mathrm{V}_{\text {SS }}$		$0.1 V_{D D}+0.4$	
				2.7 to 4.0	$V_{S S}$		$0.2 \mathrm{~V}_{\text {DD }}$	
	$\mathrm{V}_{\mathrm{IL}}(2)$	$\overline{\text { RES }}$		2.7 to 5.5	$\mathrm{V}_{\text {SS }}$		$0.25 \mathrm{~V}_{\mathrm{DD}}$	
Instruction cycle time (Note 2-2)	tCYC			2.7 to 5.5	0.272		100	$\mu \mathrm{s}$
Oscillation frequency range	FmHRC(1)		- High-speed RC oscillation - 40 MHz selected as option - Ta=-20 to $+85^{\circ} \mathrm{C}$	4.5 to 5.5	38	40	42	$\begin{gathered} \mathrm{MH} \\ \mathrm{z} \end{gathered}$
	FmHRC(2)		- High-speed RC oscillation - 40 MHz selected as option - $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$	4.5 to 5.5	37.6	40	42.4	
	FmHRC(3)			3.5 to 5.5	36.8	40	43.2	
	FmHRC(4)			2.7 to 5.5	32	40	43.2	
	FmHRC(5)		- High-speed RC oscillation - 20 MHz selected as option - $\mathrm{Ta}=-20$ to $+85^{\circ} \mathrm{C}$	3.0 to 5.5	19	20	21	
	FmHRC(6)		- High-speed RC oscillation - 20 MHz selected as option - $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$	2.7 to 5.5	18.7	20	21.3	
	FmRC		Medium-speed RC oscillation	2.7 to 5.5	0.5	1.0	2.0	
	FmSLRC		Low-speed RC oscillation	2.7 to 5.5	15	30	60	kHz
Oscillation stabilization time	tmsHRC		- When high-speed RC oscillation state is switched from stopped to enabled. - See Fig. 2.	2.7 to 5.5			100	$\mu \mathrm{s}$

Note 2-1: Use this product in a voltage range of 3.0 to 5.5 V because the minimum release voltage (PORRL) of the power-on reset (POR) circuit is $2.87 \mathrm{~V} \pm 0.12 \mathrm{~V}$.
Note 2-2: Relationship between tCYC and oscillation frequency is as follows:

- When system clock source is set to medium-speed RC oscillation $3 / \mathrm{FmRC}$ at a division ratio of $1 / 1,6 / \mathrm{FmRC}$ at a division ratio of $1 / 2,12 / \mathrm{FmRC}$ a division ratio of $1 / 4$, and so forth
- When system clock source is set to high-speed RC oscillation (40MHz selected by optional configuration) $12 / \mathrm{FmHRC}$ at a division ratio of $1 / 1,24 /$ FmHRC at a division ratio of $1 / 2,48 /$ FmHRC a division ratio of $1 / 4$, and so forth
- When system clock source is set to high-speed RC oscillation (20 MHz selected by optional configuration) $6 /$ FmHRC at a division ratio of $1 / 1,12 /$ FmHRC at a division ratio of $1 / 2,24 /$ FmHRC a division ratio of $1 / 4$, and so forth

LC87F2608A
Electrical Characteristics at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VSS} 1=0 \mathrm{~V}$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
High level input current	${ }^{1} H^{(1)}$	- Port 1 - Port 3	- Output disabled - Pull-up resistor off - $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ (including output Tr. off leakage current)	2.7 to 5.5			1	$\mu \mathrm{A}$
	$\mathrm{IIH}^{(2)}$	$\overline{\mathrm{RES}}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	2.7 to 5.5			1	
Low level input current	IIL	- Port 1 - Port 3	- Output disabled - Pull-up resistor off - $\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{SS}}$ (including output Tr. off leakage current)	2.7 to 5.5	-1			
High level output voltage	$\mathrm{V}_{\mathrm{OH}}(1)$	CMOS output type port 1	${ }^{1} \mathrm{OH}=-1 \mathrm{~mA}$	4.5 to 5.5	$\mathrm{V}_{\mathrm{DD}}{ }^{-1}$			V
	$\mathrm{V}_{\mathrm{OH}}(2)$		${ }^{1} \mathrm{OH}^{\prime}=-0.35 \mathrm{~mA}$	2.7 to 5.5	$\mathrm{V}_{\text {DD }} 0.4$			
	$\mathrm{V}_{\mathrm{OH}}(3)$	CMOS output type port 3	$\mathrm{l}^{\mathrm{OH}}=-5 \mathrm{~mA}$	4.5 to 5.5	$\mathrm{V}_{\text {DD }} \mathrm{V}^{1.5}$			
	$\mathrm{V}_{\mathrm{OH}}(4)$		$\mathrm{I}^{\mathrm{OH}}=-0.7 \mathrm{~mA}$	2.7 to 5.5	$\mathrm{V}_{\text {DD }} 0.4$			
Low level output voltage	$\mathrm{V}_{\mathrm{OL}}(1)$	Port 1	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$	4.5 to 5.5			1.5	
	$\mathrm{V}_{\text {OL }}(2)$		$\mathrm{I}^{\mathrm{OL}}=1.4 \mathrm{~mA}$	2.7 to 5.5			0.4	
	$\mathrm{V}_{\mathrm{OL}}(3)$	Port 3	$\mathrm{I}^{\mathrm{OL}}=5 \mathrm{~mA}$	4.5 to 5.5			1.5	
	$\mathrm{V}_{\mathrm{OL}}(4)$		${ }^{\mathrm{OL}}=0.7 \mathrm{~mA}$	2.7 to 5.5			0.4	
Pull-up resistance	Rpu(1)	- Port 1 - Port 3	$\mathrm{V}_{\mathrm{OH}}=0.9 \mathrm{~V}_{\mathrm{DD}}$	4.5 to 5.5	15	35	80	k Ω
	Rpu(2)			2.7 to 4.5	18	50	150	
	Rpu(3)	$\overline{\text { RES }}$		2.7 to 5.5	216	360	504	
Hysteresis voltage	VHYS	- Port 1 - Port 3 - $\overline{\text { RES }}$		2.7 to 5.5		$0.1 \mathrm{~V}_{\text {DD }}$		V
Pin capacitance	CP	All pins	- VIN $=$ VSS for pins other than that under test - $f=1 \mathrm{MHz}$ - $\mathrm{Ta}=25^{\circ} \mathrm{C}$	2.7 to 5.5		10		pF

LC87F2608A
Serial I/O Characteristics at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VSS} 1=0 \mathrm{~V}$
SIO7 Serial I/O Characteristics (Note 4-1-1)

Parameter			Symbol	Pin/Remarks	Conditions		Specification				
			$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$			min	typ	max	unit		
		Frequency		tSCK(1)	SCK7(P12)	- See Fig. 4. (Note 4-1-2)	2.7 to 5.5	2			tCYC
		Low level pulse width	tSCKL(1)	1							
		High level pulse width	tSCKH(1)	1							
	능은귤0	Frequency	tSCK(2)	SCK7(P12)	- CMOS output selected - See Fig. 4.	2.7 to 5.5	4/3				
		Low level pulse width	tSCKL(2)				1/2			tSCK	
		High level pulse width	tSCKH(2)				1/2				
\#	Data setup time		tsDI(1)	SB7(P11), SI7(P11)	- Must be specified with respect to Rising edge of SIOCLK. - See Fig. 4.	2.7 to 5.5	0.03			$\mu \mathrm{s}$	
	Data hold time		thDI(1)				0.03				
		Output delay time	tdDO(1)	$\begin{aligned} & \text { SO7(P10), } \\ & \text { SB7(P11) } \end{aligned}$	- Must be specified with respect to rising edge of SIOCLK. - Must be specified as the time to the beginning of output state change in open drain output mode. - See Fig. 4.	2.7 to 5.5			$\begin{aligned} & \text { 1tCYC } \\ & +0.05 \end{aligned}$		
			tdDO(2)						$\begin{array}{r} (1 / 3) \text { tCYC } \\ +0.05 \end{array}$		

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.
Note 4-1-2: To use serial-clock-input in transmission/reception mode, the time from SI7RUN being set when serial clock is " H " to the first falling edge of the serial clock must be longer than 1 tCYC .

LC87F2608A
Pulse Input Conditions at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}$ SS $1=0 \mathrm{~V}$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
High/low level pulse width	$\begin{aligned} & \hline \mathrm{tPIH}(1) \\ & \mathrm{tPIL}(1) \end{aligned}$	INTA(P30), INTB(P31), INTD(P33), INTE(P10, P11), INTF(P12)	- Interrupt source flag can be set. - Event inputs for timers 0 and 1 are enabled.	2.7 to 5.5	1			tCYC
	$\begin{aligned} & \mathrm{tPIH}(2) \\ & \mathrm{tPIL}(2) \end{aligned}$	INTC(P32) when noise filter time constant is "none"	- Interrupt source flag can be set. - Event inputs for timer 0 are enabled.	2.7 to 5.5	1			
	$\begin{aligned} & \mathrm{tPIH}(3) \\ & \mathrm{tPIL}(3) \end{aligned}$	INTC(P32) when noise filter time constant is "1/16"	- Interrupt source flag can be set. - Event inputs for timer 0 are enabled.	2.7 to 5.5	64			
	tPIH(4) tPIL(4)	INTC(P32) when noise filter time constant is "1/32"	- Interrupt source flag can be set. - Event inputs for timer 0 are enabled.	2.7 to 5.5	128			
	$\begin{aligned} & \mathrm{tPIH}(5) \\ & \mathrm{tPIL}(5) \end{aligned}$	INTC(P32) when noise filter time constant is "1/64"	- Interrupt source flag can be set. - Event inputs for timer 0 are enabled.	2.7 to 5.5	256			
	$\begin{aligned} & \hline \operatorname{tPIH}(6) \\ & \operatorname{tPIL}(6) \end{aligned}$	HCT1IN(P30)	Pulses can be recognized as signals by the high-speed pulse width/period counter 1.	2.7 to 5.5	3			H1CK (Note 5-1)
	$\begin{aligned} & \mathrm{tPIH}(7) \\ & \mathrm{tPIL}(7) \end{aligned}$	HCT2IN(P11, P31)	Pulses can be recognized as signals by the high-speed pulse width/period counter 2.	2.7 to 5.5	6			H2CK (Note 5-2)
	tPIL(8)	$\overline{\mathrm{RES}}$	Resetting is enabled.	2.7 to 5.5	200			$\mu \mathrm{s}$

Note 5-1: H1CK denotes the period of the base clock (1 to $8 \times$ high-speed RC oscillation clock or system clock) for the high-speed pulse width/period counter 1.
Note 5-2: H2CK denotes the period of the base clock (2 to $16 \times$ high-speed RC oscillation clock or system clock) for the high-speed pulse width/period counter 2.

Comparator Characteristics at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}$ SS $1=0 \mathrm{~V}$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
Common mode input voltage range	VCMIN	$\begin{aligned} & \text { IN+(P11), } \\ & \text { IN-(P12) } \end{aligned}$		2.7 to 5.5	V_{SS}		$\mathrm{V}_{\mathrm{DD}}{ }^{-1.5}$	V
Offset voltage	VOFF		Within common mode input voltage range	2.7 to 5.5		± 10	± 30	mV
Response time	tRT		- Within common mode input voltage range - Input amplitude $=100 \mathrm{mV}$ - Overdrive $=50 \mathrm{mV}$	2.7 to 5.5		200	600	ns
Operation stabilization time (Note 6-1)	tCMW			2.7 to 5.5			1.0	$\mu \mathrm{s}$

Note 6-1: The interval after CMPON is set till the operation gets stabilized.

AD Converter Characteristics at $\mathrm{V}_{\mathrm{SS}} 1=0 \mathrm{~V}$
<12-bit AD conversion mode at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}>$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
Resolution	N	ANO(P10) to AN2(P12)		3.0 to 5.5		12		bit
Absolute accuracy	ET		(Note 7-1)	3.0 to 5.5			± 16	LSB
Conversion time	tCAD		- See "Conversion time calculation method." (Note 7-2)	4.0 to 5.5	38		104.3	$\mu \mathrm{s}$
				3.0 to 5.5	75.8		104.3	
Analog input voltage range	VAIN			3.0 to 5.5	$\mathrm{V}_{\text {SS }}$		V_{DD}	V
Analog port input current	IAINH		VAIN $=\mathrm{V}_{\text {DD }}$	3.0 to 5.5			1	$\mu \mathrm{A}$
	IAINL		VAIN $=\mathrm{V}_{\text {SS }}$	3.0 to 5.5	-1			

<8-bit AD Converter Mode at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}>$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				V ${ }_{\text {DD }}$ [V]	min	typ	max	unit
Resolution	N	$\begin{aligned} & \text { ANO(P10) } \\ & \text { to AN2(P12) } \end{aligned}$		3.0 to 5.5		8		bit
Absolute accuracy	ET		(Note 7-1)	3.0 to 5.5			± 1.5	LSB
Conversion time	tCAD		- See "Conversion time calculation method." (Note 7-2)	4.0 to 5.5	23.4		64.3	$\mu \mathrm{s}$
				3.0 to 5.5	46.7		64.3	
Analog input voltage range	VAIN			3.0 to 5.5	VSS		VDD	V
Analog port input current	IAINH		VAIN $=\mathrm{V}_{\text {DD }}$	3.0 to 5.5			1	$\mu \mathrm{A}$
	IAINL		VAIN $=\mathrm{V}_{\text {SS }}$	3.0 to 5.5	-1			

<Conversion time calculation method>
12 -bit AD conversion mode: tCAD (conversion time) $=((52 /($ division ratio $))+2) \times(1 / 3) \times$ tCYC
8 -bit AD conversion mode: tCAD $($ conversion time $)=((32 /($ division ratio $))+2) \times(1 / 3) \times$ tCYC
<Recommended Operating Conditions>

| High-speed RC
 Oscillation
 (FmHRC) | Supply Voltage
 Range
 (VDD) | System Clock
 Division Ratio
 (SYSDIV) | Cycle Time
 (tCYC) | AD Division Ratio
 (ADDIV) | Conversion Time (tCAD) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $40 \mathrm{MHz} / 20 \mathrm{MHz}$ | 4.0 V to 5.5 V | $1 / 1$ | 300 ns | $12-\mathrm{bit} \mathrm{AD}$ | |
| | 3.0 V to 5.5 V | $1 / 1$ | 300 ns | $1 / 8$ | $41.8 \mu \mathrm{~s}$ |

Note 7-1: The quantization error ($\pm 1 / 2 \mathrm{LSB}$) is excluded from the absolute accuracy. The absolute accuracy is measured when no change occurs in the I/O state of the pins that are adjacent to the analog input channel during AD conversion processing.
Note 7-2: The conversion time refers to the interval from the time a conversion starting instruction is issued till the time the complete digital conversion value against the analog input value is loaded in the result register.
*The conversion time is twice the normal value when one of the following conditions occurs:

- The first AD conversion executed in the 12 -bit AD conversion mode after a system reset.
- The first AD conversion executed after the AD conversion mode is switched from 8-bit to 12-bit AD conversion mode.

LC87F2608A
Power-on Reset (POR) Characteristics at Ta $=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}$ SS $1=0 \mathrm{~V}$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				Option Selecting Voltage	min	typ	max	unit
POR release voltage	PORRL		- Option selected - See Fig. 6. (Note 8-1)	2.87 V	2.75	2.87	2.99	V
				3.86 V	3.73	3.86	3.99	
				4.35 V	4.21	4.35	4.49	
Unknown voltage area	POUKS		- See Fig. 6. (Note 8-2)			0.7	0.95	
Power startup time	PORIS		Power startup time from $\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$ to 2.8 V				100	ms

Note 8-1: The POR release voltage can be selected from three levels when the low-voltage detection feature is deselected. Note 8-2: There is an unpredictable period before the power-on reset transistor starts to turn on.

Low-voltage Detection (LVD) Characteristics at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$, VSS $1=0 \mathrm{~V}$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				Option Selecting Voltage	min	typ	max	unit
LVD reset voltage (Note 9-2)	LVDET		- Option selected - See Fig. 7. (Note 9-1) (Note 9-3)	2.81 V	2.71	2.81	2.91	V
				3.79 V	3.69	3.79	3.89	
				4.28 V	4.18	4.28	4.38	
LVD voltage hysteresis	LVHYS			2.81 V		60		mV
				3.79 V		65		
				4.28 V		65		
Unknown voltage area	LVUKS		- See Fig. 7. (Note 9-4)			0.7	0.95	V
Minimum low voltage detection width (response sensitivity)	tLVDW		- LVDET-0.5V - See Fig. 8.		0.2			ms

Note 9-1: The LVD reset voltage can be selected from three levels when the low-voltage detection feature is selected.
Note 9-2: The hysteresis voltage is not included in the LVD reset voltage value.
Note 9-3: There are cases when the LVD reset voltage value is exceeded when a greater change in the output level or large current is applied to the port.
Note 9-4: There is an unpredictable period before the low-voltage detection resetting transistor starts to run.

Consumption Current Characteristics at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }} 1=0 \mathrm{~V}$

Note 10-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

LC87F2608A
F-ROM Programming Characteristics at $\mathrm{Ta}=+10$ to $+55^{\circ} \mathrm{C}, \mathrm{V}$ SS $1=0 \mathrm{~V}$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
Onboard programming current	IDDFW	$\mathrm{V}_{\mathrm{DD}} 1$	- Microcontroller consumption current is excluded.	3.0 to 5.5		5	10	mA
Programming time	tFW(1)		- Erase operation	3.0 to 5.5		20	30	ms
	tFW(2)		- Programming operation			40	60	$\mu \mathrm{s}$

Power Pin Treatment Recommendations (VDD1, VSS1)

Connect bypass capacitors that meet the following conditions between the VDD1 and VSS1 pins:

- Connect among the VDD^{1} and $\mathrm{V}_{\text {SS }} 1$ pins and bypass capacitors C 1 and C 2 with the shortest possible heavy lead wires, making sure that the impedances between the both pins and the bypass capacitors are as equal as possible (L1=L1', L2=L2').
- Connect a large-capacity capacitor C1 and a small-capacity capacitor C2 in parallel.

The capacitance of C2 should be approximately $0.1 \mu \mathrm{~F}$.

Figure 1 AC Timing Measurement Point

Reset Time and Oscillation Stabilization Time

HOLD Release Signal and Oscillation Stabilization Time

Figure 2 Oscillation Stabilization Times

Note:

The external peripheral circuit differs depending on the way in which the power-on reset and low-voltage detection reset functions are used. Refer to the Chapter, entitled "Reset Function," of the user's manual.

Figure 3 Sample Reset Circuit

Figure 4 Serial I/O Waveforms

Figure 5 Pulse Input Timing Signal Waveform

Figure 6 Example of POR Only (LVD Deselected) Mode Waveforms (at Reset Pin with RRES Pull-up Resistor Only)

- The POR circuit generates a reset signal only when the power voltage is raised from the VSS level.
- No stable reset signal is generated if power is turned on again when the power voltage does not go down to the VSS level as shown in (a). If this case is anticipated, use the LVD function as explained below or configure an external reset circuit.
- A reset is effected only when power is turned on again after the power voltage goes down to and remains at the VSS level for 100μ s or longer as shown in (b).

Figure 7 Example of POR + LVD Mode Waveforms (at Reset Pin with RRES Pull-up Resistor Only)

- A reset is effected both when power is turned on and when it goes down.
- The hysteresis width (LVHYS) is introduced in the LVD circuit to prevent the iterations of the IC entering and exiting the reset state near the detection threshold level.

Figure 8 Minimum Low Voltage Detection Width (Example of Short Interruption of Power/ Power Fluctuation Waveform)

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for 8 -bit Microcontrollers - MCU category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
CY8C20524-12PVXIT MB95F012KPFT-G-SNE2 MB95F013KPMC-G-SNE2 MB95F263KPF-G-SNE2 MB95F264KPFT-G-SNE2
MB95F398KPMC-G-SNE2 MB95F478KPMC2-G-SNE2 MB95F564KPF-G-SNE2 MB95F636KWQN-G-SNE1 MB95F696KPMC-G-SNE2
MB95F698KPMC2-G-SNE2 MB95F698KPMC-G-SNE2 MB95F818KPMC1-G-SNE2 901015X CY8C3MFIDOCK-125 403708R
MB95F354EPF-G-SNE2 MB95F564KWQN-G-SNE1 MB95F636KP-G-SH-SNE2 MB95F694KPMC-G-SNE2 MB95F778JPMC1-G-SNE2
MB95F818KPMC-G-SNE2 LC87F0G08AUJA-AH CP8361BT CG8421AF MB95F202KPF-G-SNE2 DF36014FPV 5962-8768407MUA MB95F318EPMC-G-SNE2 MB94F601APMC1-GSE1 MB95F656EPF-G-SNE2 LC78615E-01US-H LC87F5WC8AVU-QIP-H MB95F108AJSPMC-G-JNE1 73S1210F-68M/F/PJ MB89F538-101PMC-GE1 LC87F7DC8AVU-QIP-H MB95F876KPMC-G-SNE2 MB88386PMC-GS-BNDE1 LC87FBK08AU-SSOP-H LC87F2C64AU-QFP-H MB95F636KNWQN-G-118-SNE1 MB95F136NBSTPFV-GSN2E1 LC87F5NC8AVU-QIP-E CY8C20324-12LQXIT LC87F76C8AU-TQFP-E CG8581AA LC87F2G08AU-SSOP-E CP8085AT MB95F564KPF-G-UNE2

[^0]: * This product is licensed from Silicon Storage Technology, Inc. (USA).

