CMOSIC 8K-byte FROM and 256-byte RAM integrated

8-bit 1-chip Microcontroller

http://onsemi.com

Overview

The LC87F2G08A is an 8-bit microcomputer that, integrates on a single chip a number of hardware features such as 8K-byte flash ROM, 256-byte RAM, an On-chip-debugger, a 16-bit timers/counters, two 8-bit timers, a base timer serving as a time-of-day clock, a high-speed clock counter, a synchronous SIO interface, an asynchronous/synchronous SIO interface, a UART interface, a 12-bit/8-bit 8-channel AD converter, a system clock frequency divider, an internal reset and an interrupt feature.

Features

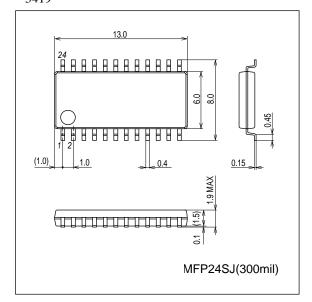
- ■Flash ROM
 - 8192×8 bits
 - Capable of On-board programming with wide range (2.2 to 5.5V) of voltage source.
 - Block-erasable in 128 byte units
 - Writable in 2-byte units

■RAM

• 256×9 bits

■Package Form

• MFP24SJ (300mil): Lead-/Halogen-free type

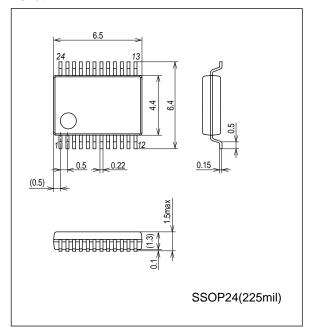

• SSOP24 (225mil): Lead-free type

• VCT24 (3.5×3.5): Lead-/Halogen-free type (build-to-order)

• MFP24S (300mil): Lead-free type (discontinued)

Package Dimensions

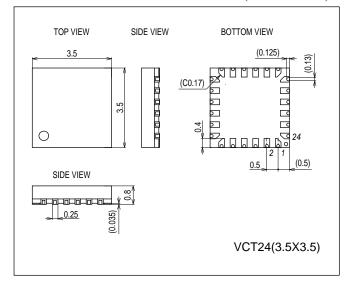
unit: mm (typ) 3419



* This product is licensed from Silicon Storage Technology, Inc. (USA).

Package Dimensions

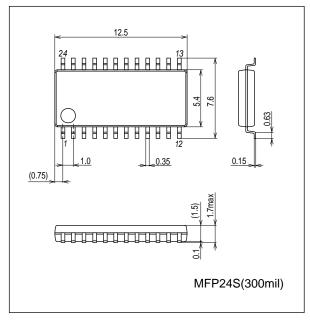
unit: mm (typ)


3287

Package Dimensions

unit : mm (typ) 3322A

(Build-to-order)



Package Dimensions

unit: mm (typ)

3112B

(Discontinued)

■Minimum Bus Cycle

- 83.3ns (12MHz at V_{DD}=2.7V to 5.5V)
- 100ns (10MHz at V_{DD}=2.2V to 5.5V)
- 250ns (4MHz at V_{DD}=1.8V to 5.5V)

Note: The bus cycle time here refers to the ROM read speed.

■Minimum Instruction Cycle Time

- 250ns (12MHz at V_{DD}=2.7V to 5.5V)
- 300ns (10MHz at V_{DD}=2.2V to 5.5V)
- 750ns (4MHz at V_{DD}=1.8V to 5.5V)

■Ports

• Normal withstand voltage I/O ports

Ports I/O direction can be designated in 1-bit units
11 (P1n, P20, P21, P70)
Ports I/O direction can be designated in 4-bit units
8 (P0n)

• Dedicated oscillator ports/input ports 2 (CF1/XT1, CF2/XT2)

• Reset pin 1 (RES)

• Power pins 2 (V_{SS}1, V_{DD}1)

■Timers

• Timer 0: 16-bit timer/counter with a capture register.

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) × 2 channels

Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)

+ 8-bit counter (with an 8-bit capture register)

Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)

Mode 3: 16-bit counter (with a 16-bit capture register)

• Timer 1: 16-bit timer/counter that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer/

counter with an 8-bit prescaler (with toggle outputs)

Mode 1: 8-bit PWM with an 8-bit prescaler × 2 channels

Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)

(toggle outputs also possible from the lower-order 8 bits)

Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)

(The lower-order 8 bits can be used as PWM)

- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Base timer
 - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - 2) Interrupts are programmable in 5 different time schemes

■High-Speed Clock Counter

- Can count clocks with a maximum clock rate of 20MHz (at a main clock of 10MHz).
- Can generate output real time.

■SIO

- SIO0: 8-bit Synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle=4/3tCYC)
- SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
 - Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)
 - Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)
 - Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)

■UART

- Full Duplex
- 7/8/9 bit data bits selectable
- 1 stop bit (2 bits in continuous data transmission)
- Built-in baudrate generator
- ■AD Converter: 12 bits/8 bits × 8 channels
 - 12 bits/8 bits AD converter resolution selectable
- ■Remote Control Receiver Circuit (sharing pins with P15, SCK1, INT3, and T0IN)
 - Noise rejection function (noise filter time constant selectable from 1 tCYC, 32 tCYC, and 128 tCYC)

■Clock Output Function

- Can generate clock outputs with a frequency of 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 of the source clock selected as the system clock.
- Can generate the source clock for the subclock

■Watchdog Timer

- External RC watchdog timer
- Interrupt and reset signals selectable

■Interrupts

- 18 sources, 10 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4
4	0001BH	H or L	INT3/base timer
5	00023H	H or L	ТОН
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	SIO0/UART1 receive
8	0003BH	H or L	SIO1/UART1 transmit
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0

- Priority levels X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- ■Subroutine Stack Levels: 128levels (The stack is allocated in RAM.)
- High-speed Multiplication/Division Instructions

16 bits × 8 bits
24 bits × 16 bits
16 bits ÷ 8 bits
24 bits ÷ 16 bits
16 bits ÷ 16 bits
17 tCYC execution time
18 tCYC execution time
19 tCYC execution time
10 tCYC execution time
10 tCYC execution time
11 tCYC execution time
12 tCYC execution time

■Oscillation Circuits

• Internal oscillation circuits

Low-speed RC oscillation circuit : For system clock (100kHz)
Medium-speed RC oscillation circuit : For system clock (1MHz)
Multifrequency RC oscillation circuit : For system clock (8MHz)

• External oscillation circuits

Hi-speed CF oscillation circuit: For system clock, with internal Rf

Low speed crystal oscillation circuit: For low-speed system clock, with internal Rf

- 1) The CF and crystal oscillation circuits share the same pins. The active circuit is selected under program control.
- 2) Both the CF and crystal oscillator circuits stop operation on a system reset. When the reset is released, only the CF oscillation circuit resumes operation.

■System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from 300ns, 600ns, 1.2μs, 2.4μs, 4.8μs, 9.6μs, 19.2μs, 38.4μs, and 76.8μs (at a main clock rate of 10MHz).

■Internal Reset Function

- Power-on reset (POR) function
 - 1) POR reset is generated only at power-on time.
 - 2) The POR release level can be selected from 8 levels (1.67V, 1.97V, 2.07V, 2.37V, 2.57V, 2.87V, 3.86V, and 4.35V) through option configuration.
- Low-voltage detection reset (LVD) function
 - 1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
 - 2) The use/disuse of the LVD function and the low voltage threshold level (7 levels: 1.91V, 2.01V, 2.31V, 2.51V, 2.81V, 3.79V, 4.28V).

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) There are three ways of resetting the HALT mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Occurrence of an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC, and crystal oscillators automatically stop operation.
 - 2) There are four ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the lower level.
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Having an interrupt source established at either INT0, INT1, INT2, INT4
 - * INTO and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0.
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer.
 - 1) The CF and RC oscillators automatically stop operation.
 - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are five ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level.
 - (2) System resetting by watchdog timer or low-voltage detection.
 - (3) Having an interrupt source established at either INT0, INT1, INT2, INT4
 - * INTO and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0.
 - (5) Having an interrupt source established in the base timer circuit.

Note: Available only when X'tal oscillation is selected.

■Onchip Debugger

- Supports software debugging with the IC mounted on the target board.
- Two channels of on-chip debugger pins are available to be compatible with small pin count devices. DBGP0 (P0), DBGP1 (P1)
- ■Data Security Function (flash versions only)
 - \bullet Protects the program data stored in flash memory from unauthorized read or copy.

Note: This data security function does not necessarily provide absolute data security.

■Development Tools

- On-chip debugger: (1) TCB87 type B + LC87D2G08A
 - (2) TCB87 TypeB + LC87F2G08A
 - (3) TCB87 TypeC (3 wire version) + LC87D2G08A
 - (4) TCB87 TypeC (3 wire version) + LC87F2G08A

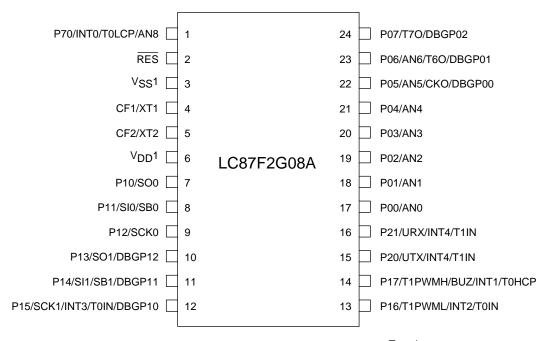
Note: LC87F2G08A has an On-chip debugger but its function is limited.

■Flash ROM Programming Boards

Package	Programming boards
MFP24S(300mil)	W87F2GM
MFP24SJ(300mil)	W87F2GMJ
SSOP24(225mil)	W87F2GS
VCT24(3.5×3.5)	(build-to-order)

■Flash ROM Programmer

Maker		Model	Supported version	Device
	Single AF9708 Programmer AF9709/AF9709B/AF9709C (Including Ando Electric Co., Ltd. models)		Rev 02.72 or later	LC87F2H08A
Flash Support Group, Inc. (FSG)	Gang	AF9723/AF9723B(Main body) (Including Ando Electric Co., Ltd. models)	-	-
	Programmer	AF9833(Unit) (Including Ando Electric Co., Ltd. models)	-	-
Flash Support Group, Inc. (FSG) +	In-circuit Programmer AF9101/AF9103(Main body) (FSG models) SIB87(Inter Face Driver)		(Note 2)	LC87F2G08A
Our company (Note 1)	. regramme.	(Our company model)		
Our company	Single/Gang Programmer	SKK/SKK Type B (SanyoFWS)	Application Version 1.04 or later	1.00750000
Our company	In-circuit/Gang Programmer	SKK-DBG Type B (SanyoFWS)	Chip Data Version 2.10 or later	LC87F2G08A

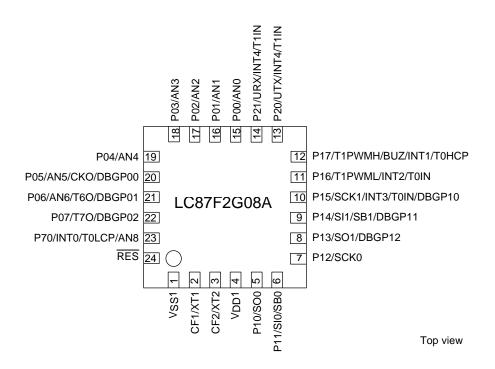

For information about AF-Series:

Flash Support Group, Inc. TEL: +81-53-459-1050 E-mail: sales@j-fsg.co.jp

Note1: On-board-programmer from FSG (AF9101/AF9103) and serial interface driver from Our company (SIB87) together can give a PC-less, standalone on-board-programming capabilities.

Note2: It needs a special programming devices and applications depending on the use of programming environment. Please ask FSG or Our company for the information.

Pin Assignment

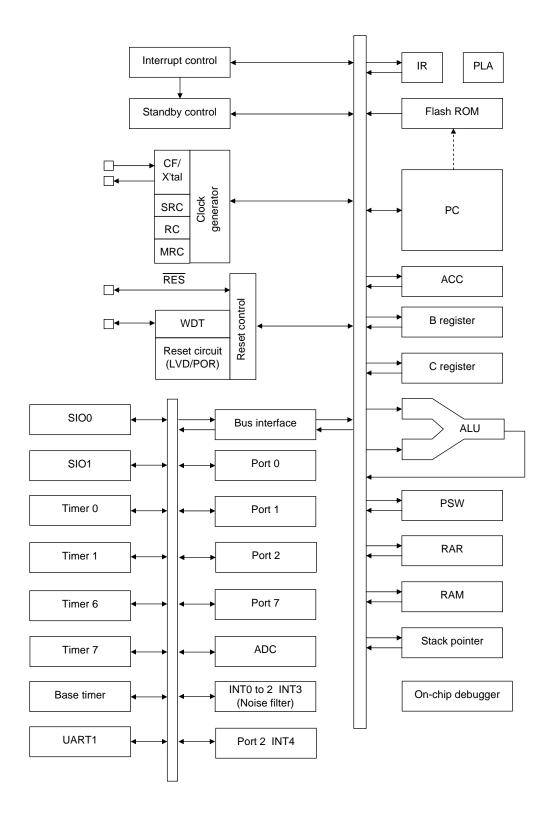


Top view

MFP24S (300mil) "Lead-free Type" MFP24SJ (300mil) "Lead-/Halogen-free Type" SSOP24 (225mil) "Lead-free Type"

MFP24S/				
MFP24SJ/	NAME			
SSOP24				
1	P70/INT0/T0LCP/AN8			
2	RES			
3	V _{SS} 1			
4	CF1/XT1			
5	CF2/XT2			
6	V _{DD} 1			
7	P10/SO0			
8	P11/SI0/SB0			
9	P12/SCK0			
10	P13/SO1/DBGP12			
11	P14/SI1/SB1/DBGP11			
12	P15/SCK1/INT3/T0IN/DBGP10			

MFP24S/				
MFP24SJ/	NAME			
SSOP24				
13	P16/T1PWML/INT2/T0IN			
14	P17/T1PWMH/BUZ/INT1/T0HCP			
15	P20/UTX/INT4/T1IN			
16	P21/URX/INT4/T1IN			
17	P00/AN0			
18	P01/AN1			
19	P02/AN2			
20	P03/AN3			
21	P04/AN4			
22	P05/AN5/CKO/DBGP00			
23	P06/AN6/T6O/DBGP01			
24	P07/T7O/DBGP02			



VCT24(3.5×3.5) "Lead-/Halogen-free Type" (build-to-order)

VCT24	NAME			
1	V _{SS} 1			
2	CF1/XT1			
3	CF2/XT2			
4	V _{DD} 1			
5	P10/SO0			
6	P11/SI0/SB0			
7	P12/SCK0			
8	P13/SO1/DBGP12			
9	P14/SI1/SB1/DBGP11			
10	P15/SCK1/INT3/T0IN/DBGP10			
11	P16/T1PWML/INT2/T0IN			
12	P17/T1PWMH/BUZ/INT1/T0HCP			

VCT24	NAME			
13	P20/UTX/INT4/T1IN			
14	P21/URX/INT4/T1IN			
15	P00/AN0			
16	P01/AN1			
17	P02/AN2			
18	P03/AN3			
19	P04/AN4			
20	P05/AN5/CKO/DBGP00			
21	P06/AN6/T6O/DBGP01			
22	P07/T7O/DBGP02			
23	P70/INT0/T0LCP/AN8			
24	RES			

System Block Diagram

Pin Description

- - I/O	- Power supply + Power supply • 8-bit I/O port • I/O specifiable • Pull-up resiste • HOLD reset ii • Port 0 interrup	pin e in 4-bit units ors can be turned					No No				
	8-bit I/O port I/O specifiable Pull-up resiste HOLD reset in	e in 4-bit units					No				
I/O	I/O specifiable Pull-up resiste HOLD reset in	ors can be turned									
	Pull-up resiste HOLD reset in	ors can be turned			• 8-bit I/O port						
	HOLD reset in										
		_	d on and off in 4-	bit units.							
	Port 0 interrup	nput									
		ot input									
	Pin functions						Yes				
	P05: System	clock output									
	P06: Timer 6	toggle output									
	P07: Timer 7	toggle output									
	P00(AN0) to F	P06(AN6): AD co	nverter input								
	P05(DBGP00) to P07(DBGP02	2): On-chip debu	igger 0 port							
I/O	8-bit I/O port										
	-										
	Pull-up resistor	ors can be turned	d on and off in 1-	bit units.							
		· ·									
		-									
		· ·									
		•									
		-	•	•	-						
		WML output / IN	112 input/HOLD	reset input/timer	0 event input / ti	mer 0L capture	Yes				
	The state of the s	NA/NALL = / l=	/ IN	IT4 :+ / LIQL D		011					
		200101H output / b	eeper output / IN	ITT Input / HOLD	reset input / tim	er un capture					
) to D12/DBCD1	2): On ohin dohu	iggor 1 port							
			z): On-chip-debt	igger i port							
	interrupt ackir	owiedge type		Pieina &							
		Rising	Falling	Falling	H level	L level					
	INT1	enable	enable	disable	enable	enable					
	INT2	enable	enable	enable	disable	disable					
	INT3	enable	enable	enable	disable	disable					
I/O	• 2-hit I/O port						+				
1/0	· ·	e in 1-bit units									
	· ·		d on and off in 1-	bit units.							
		5.0 ca 50 tao		u							
		ansmit									
	P21: UART re	eceive									
	P20 to P21: IN	NT4 input / HOLD	reset input / tin	ner 1 event input	/ timer 0L captur	e input / timer	Yes				
		-				·	103				
	Interrupt ackn	owledge types									
		5		Rising &							
		Rising	Falling	Falling	H level	L level					
		1		-							
	I/O	I/O specifiable Pull-up resiste Pin functions P10: SIO0 da P11: SIO0 da P12: SIO0 clo P13: SIO1 da P14: SIO1 da P15: SIO1 clo P16: Timer 1F input P17: Timer 1F input P17: Timer 4F input P15(DBGP10 Interrupt ackn INT1 INT2 INT3 I/O Pull-up resiste Pin functions P20: UART tre P20 to P21: If	I/O specifiable in 1-bit units Pull-up resistors can be turned Pin functions P10: SIO0 data output P11: SIO0 data input/bus I/O P12: SIO0 clock I/O P13: SIO1 data output P14: SIO1 data input / bus I/O P15: SIO1 clock I/O / INT3 inp P16: Timer 1PWML output / IN input P17: Timer 1PWMH output / b input P15(DBGP10) to P13(DBGP1: Interrupt acknowledge type Rising INT1 enable INT2 enable INT3 enable INT3 enable I/O 2-bit I/O port I/O specifiable in 1-bit units Pull-up resistors can be turned Pin functions P20: UART transmit P21: UART receive P20 to P21: INT4 input / HOLE OH capture input Interrupt acknowledge types	I/O specifiable in 1-bit units Pull-up resistors can be turned on and off in 1-Pin functions P10: SIO0 data output P11: SIO0 data input/bus I/O P12: SIO0 clock I/O P13: SIO1 data output P14: SIO1 data input / bus I/O P15: SIO1 clock I/O / INT3 input (with noise filt P16: Timer 1PWML output / INT2 input/HOLD input P17: Timer 1PWMH output / beeper output / IN input P15(DBGP10) to P13(DBGP12): On-chip-debut Interrupt acknowledge type Rising Falling INT1 enable enable INT2 enable enable INT3 enable enable INT3 enable enable I/O P2-bit I/O port I/O specifiable in 1-bit units Pull-up resistors can be turned on and off in 1-Pin functions P20: UART transmit P21: UART receive P20 to P21: INT4 input / HOLD reset input / time OH capture input Interrupt acknowledge types	I/O specifiable in 1-bit units Pull-up resistors can be turned on and off in 1-bit units. Pin functions P10: SIO0 data output P11: SIO0 data input/bus I/O P12: SIO0 clock I/O P13: SIO1 data output P14: SIO1 data input / bus I/O P15: SIO1 clock I/O / INT3 input (with noise filter) / timer 0 even P16: Timer 1PWML output / INT2 input/HOLD reset input/timer input P17: Timer 1PWMH output / beeper output / INT1 input / HOLD input P15(DBGP10) to P13(DBGP12): On-chip-debugger 1 port Interrupt acknowledge type Rising Falling Rising & Falling INT1 enable enable disable enable INT2 enable enable enable enable INT3 enable enable enable INT3 enable in 1-bit units Pull-up resistors can be turned on and off in 1-bit units. Pin functions P20: UART transmit P21: UART receive P20 to P21: INT4 input / HOLD reset input / timer 1 event input OH capture input Interrupt acknowledge types	I/O specifiable in 1-bit units Pull-up resistors can be turned on and off in 1-bit units. Pin functions P10: SIO0 data output P11: SIO0 data input/bus I/O P12: SIO0 clock I/O P13: SIO1 data output P14: SIO1 data input / bus I/O P15: SIO1 clock I/O / INT3 input (with noise filter) / timer 0 event input / timer 0P-P16: Timer 1PWML output / INT2 input/HOLD reset input/timer 0 event input / timer input P17: Timer 1PWMH output / beeper output / INT1 input / HOLD reset input / timer input P15(DBGP10) to P13(DBGP12): On-chip-debugger 1 port Interrupt acknowledge type Rising Falling Rising Falling Hevel INT1 enable enable disable enable INT2 enable enable enable disable enable INT3 enable enable enable disable I/O • 2-bit I/O port • I/O specifiable in 1-bit units • Pull-up resistors can be turned on and off in 1-bit units. • Pin functions P20: UART transmit P21: UART receive P20 to P21: INT4 input / HOLD reset input / timer 1 event input / timer 0L captur OH capture input Interrupt acknowledge types	I/O specifiable in 1-bit units				

Continued on next page.

Continued from preceding page.

Pin Name	I/O			Des	cription			Option
Port 7 P70	I/O	1-bit I/O port I/O specifiable i Pull-up resistor Pin functions P70: INT0 input P70(AN8): AD o Interrupt acknow	s can be turned / HOLD reset in converter input		bit units. apture input / wa Rising & Falling disable	atchdog timer ou H level enable	L level	No
RES	I/O	External reset inp	out / internal res	et output				No
CF1/XT1	ı	Ceramic resonator or 32.768kHz crystal oscillator input pin Pin function General-purpose input port						No
CF2/XT2	I/O	Ceramic resona Pin function General-purpos		Hz crystal oscilla	tor output pin			No

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

Data can be read into any input port even if it is in the output mode.

Port Name	Option selected in units of	Option type	Output type	Pull-up resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note 1)
		2	Nch-open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P20 to P21	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable

Note 1: The control of the presence or absence of the programmable pull-up resistors for port 0 and the switching between low-and high-impedance pull-up connection is exercised in nibble (4-bit) units (P00 to 03 or P04 to 07).

User Option Table

Option Name	Option to be Applied on	Flash-ROM Version	Option Selected in Units of	Option Selection
	P00 to P07	0	1 bit	CMOS
				Nch-open drain
Dort output turns	P10 to P17	0	1 bit	CMOS
Port output type				Nch-open drain
	P20 to P21	0	1 bit	CMOS
				Nch-open drain
Program start	-	0	-	00000h
address				01E00h
Low-voltage	Detect function	0	-	Enable:Use
detection reset				Disable:Not Used
function	Detect level	0	-	7-level
Power-on reset function	Power-On reset level	0	-	8-level

Recommended Unused Pin Connections

Dest Name	Recommended Unused Pin Connections			
Port Name	Board	Software		
P00 to P07	Open	Output low		
P10 to P17	Open	Output low		
P20 to P21	Open	Output low		
P70	Open	Output low		
CF1/XT1	Pulled low with a 100kΩ resistor or less	General-purpose input port		
CF2/XT2	Pulled low with a 100kΩ resistor or less	General-purpose input port		

Notes on CF1/XT1 and CF2/XT2 pins

ullet When using as general-purpose input ports Since the CF1/XT1 and CF2/XT2 pins are configured as CF oscillator pins at system reset time, it is necessary to add a current limiting resistor of $1k\Omega$ or greater to the CF2/XT2 pin in series when using them as general-purpose input pins.

• Differences between flash and mask ROM version

		System Reset Time State	After System Reset is Released
FL DOM	CF1/XT1	Set high via the internal Rf resistor	CF oscillation state
Flash ROM version LC87F2G08A	CF2/XT2	Set high	CF oscillation state
Mask ROM version	CF1/XT1	Set low via the internal Rf resistor	CF oscillation state
LC872G08A/06A/04A	CF2/XT2	Set low	CF oscillation state

On-chip Debugger Pin Connection Requirements

For the treatment of the on-chip debugger pins, refer to the separately available documents entitled "RD87 on-chip debugger installation manual" and "LC872000 series on-chip debugger pin connection requirements"

Absolute Maximum Ratings at Ta = 25°C, $V_{SS}1 = 0V$

	Parameter	Symbol	Pin/Remarks	Conditions			Specif	ication	I
					V _{DD} [V]	min	typ	max	unit
	ximum supply tage	V _{DD} max	V _{DD} 1			-0.3		+6.5	
Inp	ut voltage	VI	CF1, CF2			-0.3		V _{DD} +0.3	V
	ut/output tage	V _{IO}	Ports 0, 1, 2, P70			-0.3		V _{DD} +0.3	
nt	Peak output current	IOPH	Ports 0, 1, 2	CMOS output select Per 1 applicable pin		-10			
High level output current	Mean output current (Note 1-1)	IOMH	Ports 0, 1, 2	CMOS output select Per 1 applicable pin		-7.5			
velo	Total output	ΣΙΟΑΗ(1)	P10 to P14	Total of all applicable pins		-20			
High le	current	ΣΙΟΑΗ(2)	Ports 0, 2 P15 to P17	Total of all applicable pins		-20			
		ΣΙΟΑΗ(3)	Ports 0, 1, 2	Total of all applicable pins		-25			
	Peak output current	IOPL(1)	P02 to P07 Ports 1, 2	Per 1 applicable pin				20	
	carrone	IOPL(2)	P00, P01	Per 1 applicable pin				30	mA
+		IOPL(3)	P70	Per 1 applicable pin				10	
Low level output current	Mean output	IOML(1)	P02 to P07 Ports 1, 2	Per 1 applicable pin				15	
utbu	(Note 1-1)	IOML(2)	P00, P01	Per 1 applicable pin				20	
io le		IOML(3)	P70	Per 1 applicable pin				7.5	
v le∕	Total output	ΣIOAL(1)	P10 to P14	Total of all applicable pins				50	
Lo	current	ΣIOAL(2)	Port 0, 2, P15 to P17	Total of all applicable pins				60	
		ΣIOAL(3)	Ports 0, 1, 2	Total of all applicable pins				70	
		ΣIOAL(4)	P70	Total of all applicable pins				7.5	
	wer sipation	Pd max(1)	MFP24S(300mil)	Ta=-40 to +85°C Package only				129	
Dis	браюн	Pd max(2)		Ta=-40 to +85°C Package with thermal resistance board (Note 1-2)				229	
		Pd max(3)	MFP24SJ(300mil)	Ta=-40 to +85°C Package only				171	
		Pd max(4)		Ta=-40 to +85°C Package with thermal resistance board (Note 1-2)				393	mW
		Pd max(5)	SSOP24(225mil)	Ta=-40 to +85°C Package only				111	
		Pd max(6)		Ta=-40 to +85°C Package with thermal resistance board				334	
		Pd max(7)	VCT24(3.5×3.5)	(Note 1-2) Ta=-40 to +85°C				T.B.D	
		Pd max(8)		Package only Ta=-40 to +85°C Package with thermal resistance board				T.B.D	
	erating ambient	Topr		เธอเอเดแบซ มบปไน		-40		+85	
Sto	prage ambient	Tstg				-55		+125	°C

Note 1-1: The mean output current is a mean value measured over 100ms.

Note 1-2: SEMI standards thermal resistance board (size: 76.1×114.3×1.6tmm, glass epoxy) is used.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = 0V$

Doromotor	Cumbal	Din/Damarka	Conditions			Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating	V _{DD} (1)	V _{DD} 1	0.245μs ≤ tCYC ≤ 200μs		2.7		5.5	
supply voltage	V _{DD} (2)		0.294μs ≤ tCYC ≤ 200μs		2.2		5.5	
(Note 2-1)	V _{DD} (3)]	0.735μs ≤ tCYC ≤ 200μs		1.8		5.5	
Memory sustaining supply voltage	VHD	V _{DD} 1	RAM and register contents sustained in HOLD mode.		1.6			
High level input voltage	V _{IH} (1)	Ports 1, 2, P70 port input/ interrupt side		1.8 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (2)	Ports 0		1.8 to 5.5	0.3V _{DD} +0.7		V_{DD}	
	V _{IH} (3)	Port 70 watchdog timer side		1.8 to 5.5	0.9V _{DD}		V_{DD}	V
	V _{IH} (4)	CF1, RES		1.8 to 5.5	0.75V _{DD}		V_{DD}	
Low level	V _{IL} (1)	Ports 1, 2,		4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4	
input voltage		P70 port input/ interrupt side		1.8 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (2)	Ports 0		4.0 to 5.5	V _{SS}		0.15V _{DD} +0.4	
				1.8 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (3)	Port 70 watchdog timer side		1.8 to 5.5	V _{SS}		0.8V _{DD} -1.0	
	V _{IL} (4)	CF1, RES		1.8 to 5.5	V _{SS}		0.25V _{DD}	Ì
Instruction	tCYC			2.7 to 5.5	0.245		200	
cycle time	(Note 2-2)			2.2 to 5.5	0.294		200	μs
(Note 2-1)				1.8 to 5.5	0.735		200	"
External	FEXCF	CF1	CF2 pin open	2.7 to 5.5	0.1		12	
system clock frequency			System clock frequency division ratio=1/1 External system clock duty=50±5%	1.8 to 5.5	0.1		4	
			CF2 pin open	3.0 to 5.5	0.2		24.4	MHz
			System clock frequency division ratio=1/2 External system clock duty=50±5%	2.0 to 5.5	0.2		8	
Oscillation frequency	FmCF(1)	CF1, CF2	12MHz ceramic oscillation. See Fig. 1.	2.7 to 5.5		12		
range (Note 2-3)	FmCF(2)	CF1, CF2	10MHz ceramic oscillation. See Fig. 1.	2.2 to 5.5		10		
	FmCF(3)	CF1, CF2	4MHz ceramic oscillation. CF oscillation normal amplifier size selected. (CFLAMP=0) See Fig. 1.	1.8 to 5.5		4		
			4MHz ceramic oscillation. CF oscillation low amplifier size selected. (CFLAMP=1) See Fig. 1.	2.2 to 5.5		4		MHz
	FmMRC		Frequency variable RC oscillation. 1/2 frequency division ration. (RCCTD=0) (Note 2-4)	2.7 to 5.5	7.44	8.0	8.56	
	FmRC		Internal medium-speed RC oscillation	1.8 to 5.5	0.5	1.0	2.0	
	FmSRC		Internal low-speed RC oscillation	1.8 to 5.5	50	100	200]
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See Fig. 2.	1.8 to 5.5		32.768		kHz

- Note 2-1: V_{DD} must be held greater than or equal to 2.2V in the flash ROM onboard programming mode.
- Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.
- Note 2-3: See Tables 1 and 2 for the oscillation constants.
- Note 2-4: When switching the system clock, allow an oscillation stabilization time of 100µs or longer after the multifrequency RC oscillator circuit transmits from the "oscillation stopped" to "oscillation enabled" state.

Electrical Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C,\,V_{SS}1 = 0V$

Parameter	Symbol	Pin/Remarks	Conditions			Specifica	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	Ports 0, 1, 2, P70, RES	Output disabled Pull-up resistor off VIN=VDD (Including output Tr's off leakage current)	1.8 to 5.5			1	
	I _{IH} (2)	CF1	$V_{IN}=V_{DD}$	1.8 to 5.5			15	
Low level input current	I _{IL} (1)	Ports 0, 1, 2, P70, RES	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	1.8 to 5.5	-1			μΑ
	I _{IL} (2)	CF1	V _{IN} =V _{SS}	1.8 to 5.5	-15			
High level output	V _{OH} (1)	Ports 0, 1, 2	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
voltage	V _{OH} (2)		I _{OH} =-0.35mA	2.7 to 5.5	V _{DD} -0.4			
	V _{OH} (3)		I _{OH} =-0.15mA	1.8 to 5.5	V _{DD} -0.4			
Low level output	V _{OL} (1)	Ports 0, 1, 2	I _{OL} =10mA	4.5 to 5.5			1.5	
voltage	V _{OL} (2)		I _{OL} =1.4mA	2.7 to 5.5			0.4	
	V _{OL} (3)		I _{OL} =0.8mA	1.8 to 5.5			0.4	V
	V _{OL} (4)	P70	I _{OL} =1.4mA	2.7 to 5.5			0.4	
	V _{OL} (5)		I _{OL} =0.8mA	1.8 to 5.5			0.4	
	V _{OL} (6)	P00, P01	I _{OL} =25mA	4.5 to 5.5			1.5	
	V _{OL} (7)		I _{OL} =4mA	2.7 to 5.5			0.4	
	V _{OL} (8)		I _{OL} =2mA	1.8 to 5.5			0.4	
Pull-up resistance	Rpu(1)	Ports 0, 1, 2	V _{OH} =0.9V _{DD}	4.5 to 5.5	15	35	80	
	Rpu(2)	- P70	When Port 0 selected low-impedance pull-up.	1.8 to 4.5	18	50	230	kΩ
	Rpu(3)	Port 0	V _{OH} =0.9V _{DD} When Port 0 selected high-impedance pull-up.	1.8 to 5.5	100	210	400	K12
Hysteresis voltage	VHYS(1)	Ports 1, 2, P70,		2.7 to 5.5		0.1V _{DD}		
	VHYS(2)	RES		1.8 to 2.7		0.07V _{DD}		V
Pin capacitance	СР	All pins	For pins other than that under test: VIN=VSS f=1MHz Ta=25°C	1.8 to 5.5		10		pF

Serial I/O Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = 0V$

1. SIO0 Serial I/O Characteristics (Note 4-1-1)

		D	O. was board	Pin/	Conditions			Speci	fication	
	ŀ	Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	• See Fig. 5.		2			
	Input clock	Low level pulse width	tSCKL(1)			1.8 to 5.5	1			40)/0
Serial clock	lnp	High level pulse width	tSCKH(1)				1			tCYC
erial	k	Frequency	tSCK(2)	SCK0(P12)	CMOS output selected		4/3			
S	Output clock	Low level pulse width	tSCKL(2)		• See Fig. 5.	1.8 to 5.5		1/2		tSCK
	Out	High level pulse width	tSCKH(2)					1/2		ISCK
Serial input	Da	ta setup time	tsDI(1)	SB0(P11), SI0(P11)	Must be specified with respect to rising edge of	1.0 to F.F.	0.05			
Serial	Da	ta hold time	thDI(1)		SIOCLK. • See Fig. 5.	1.8 to 5.5	0.05			
	Input clock	Output delay time	tdD0(1)	SO0(P10), SB0(P11)	Continuous data transmission/reception mode (Note 4-1-2)				(1/3)tCYC +0.08	
Serial output	ıduı		tdD0(2)		• Synchronous 8-bit mode (Note 4-1-2)	404-55			1tCYC +0.08	μs
Serial	Output clock		tdD0(3)		(Note 4-1-2)	1.8 to 5.5			(1/3)tCYC +0.08	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5.

2. SIO1 Serial I/O Characteristics (Note 4-2-1)

		Daramatar	Cumbal	Pin/	Conditions			Spec	ification	
		Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	×	Frequency	tSCK(3)	SCK1(P15)	See Fig. 5.		2			
	Input clock	Low level pulse width	tSCKL(3)			1.8 to 5.5	1			
clock	In	High level pulse width	tSCKH(3)				1			tCYC
Serial clock	ck	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected See Fig. 5.		2			
	Output clock	Low level pulse width	tSCKL(4)			1.8 to 5.5		1/2		+00K
	nO	High level pulse width	tSCKH(4)					1/2		tSCK
Serial input	Da	ata setup time	tsDI(2)	SB1(P14), SI1(P14)	Must be specified with respect to rising edge of SIOCLK. See Fig. 5.	401.55	0.05			
Serial	Da	ata hold time	thDI(2)			1.8 to 5.5	0.05			
Serial output	Ou	utput delay time	tdD0(4)	SO1(P13), SB1(P14)	Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5.	1.8 to 5.5			(1/3)tCYC +0.08	μs

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at Ta = -40°C to +85°C, $V_{SS}1 = 0V$

Danamatan	O:hl	Dia/Damanta	O a madistica ma			Speci	fication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level pulse width	tPIH(1) tPIL(1)	INT0(P70), INT1(P17), INT2(P16), INT4(P20 to P21)	Interrupt source flag can be set. Event inputs for timer 0 or 1 are enabled. 1.8 to 5.5		1			
	tPIH(2) tPIL(2)	INT3(P15) when noise filter time constant is 1/1	Interrupt source flag can be set. Event inputs for timer 0 are enabled.	1.8 to 5.5	2			tCYC
	tPIH(3) tPIL(3)	INT3(P15) when noise filter time constant is 1/32	Interrupt source flag can be set. Event inputs for timer 0 are nabled.	1.8 to 5.5	64			
	tPIH(4) tPIL(4)	INT3(P15) when noise filter time constant is 1/128	Interrupt source flag can be set. Event inputs for timer 0 are enabled.	1.8 to 5.5	256			
	tPIL(5)	RES	Resetting is enabled.	1.8 to 5.5	200			μs

AD Converter Characteristics at $V_{SS}1 = 0V$

<12bits AD Converter Mode/Ta = -40° C to $+85^{\circ}$ C >

Danamatan	O make al	Dia /Damanda	Conditions	_		Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P00) to		2.4 to 5.5		12		bit
Absolute	ET	AN6(P06)	(Note 6-1)	3.0 to 5.5			±16	
accuracy		AN8(P70)	(Note 6-1) • Ta=-10 to +50°C	2.4 to 3.6			±20	LSB
Conversion time TCAE	TCAD	AD	See Conversion time calculation	4.0 to 5.5	32		115	
			formulas. (Note 6-2)	3.0 to 5.5	64		115	
			See Conversion time calculation formulas. (Note 6-2) Ta=-10 to +50°C	2.4 to 3.6	410		425	μs
Analog input voltage range	VAIN			2.4 to 5.5	V _{SS}		V_{DD}	V
Analog port	• •	VAIN=V _{DD}	2.4 to 5.5			1		
input current		VAIN=V _{SS}	2.4 to 5.5	-1	·		μА	

<8bits AD Converter Mode/Ta = -40°C to +85°C >

	0	D: /D	0 - 150			Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P00) to		2.4 to 5.5		8		bit
Absolute accuracy	ET	AN6(P06) AN8(P70)	(Note 6-1)	2.4 to 5.5			±1.5	LSB
Conversion time	TCAD		See Conversion time calculation	4.0 to 5.5	20		90	
			formulas. (Note 6-2)	3.0 to 5.5	40		90	
			See Conversion time calculation formulas. (Note 6-2) Ta=-10 to +50°C	2.4 to 3.6	250		265	μs
Analog input voltage range	VAIN			2.4 to 5.5	V _{SS}		V _{DD}	٧
Analog port	IAINH		VAIN=V _{DD}	2.4 to 5.5			1	
input current	IAINL		VAIN=VSS	2.4 to 5.5	-1			μΑ

- Note 6-1: The quantization error $(\pm 1/2LSB)$ must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.
- Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

Conversion time calculation formulas:

12bits AD Converter Mode: TCAD(Conversion time) = $((52/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$ 8bits AD Converter Mode: TCAD(Conversion time) = $((32/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$

External oscillation	Operating supply voltage range	System division ratio	Cycle time	AD division ratio	AD conversion time (TCAD)		
(FmCF)	(V _{DD})	(SYSDIV)	(tCYC)	(ADDIV)	12bit AD	8bit AD	
CF-12MHz	4.0V to 5.5V	1/1	250ns	1/8	34.8µs	21.5μs	
CF-12MHZ	3.0V to 5.5V	1/1	250ns	1/16	69.5µs	42.8µs	
OF 40MH-	4.0V to 5.5V	1/1	300ns	1/8	41.8µs	25.8µs	
CF-10MHz	3.0V to 5.5V	1/1	300ns	1/16	83.4µs	51.4µs	
OF AMILE	3.0V to 5.5V	1/1	750ns	1/8	104.5μs	64.5μs	
CF-4MHz	2.4V to 3.6V	1/1	750ns	1/32	416.5μs	256.5μs	

Power-on Reset (POR) Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = 0V$

						Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
POR release	PORRL		Select from option.	1.67V	1.55	1.67	1.79	
voltage			(Note 7-1)	1.97V	1.85	1.97	2.09	
				2.07V	1.95	2.07	2.19	
				2.37V	2.25	2.37	2.49	
				2.57V	2.45	2.57	2.69	
				2.87V	2.75	2.87	2.99	V
				3.86V	3.73	3.86	3.99	
				4.35V	4.21	4.35	4.49	
Detection voltage unknown state	POUKS		• See Fig. 7. (Note 7-2)			0.7	0.95	
Power supply rise time	PORIS		Power supply rise time from 0V to 1.6V.				100	ms

Note7-1: The POR release level can be selected out of 8 levels only when the LVD reset function is disabled.

Note7-2: POR is in an unknown state before transistors start operation.

Low Voltage Detection Reset (LVD) Characteristics at Ta = -40°C to +85°C, $V_{SS}1=0V$

						Specific	ation	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
LVD reset voltage	LVDET		Select from option.	1.91V	1.81	1.91	2.01	
(Note 8-2)			(Note 8-1)	2.01V	1.91	2.01	2.11	
			(Note 8-3) • See Fig. 8.	2.31V	2.21	2.31	2.41	
			• See Fig. 6.	2.51V	2.41	2.51	2.61	V
				2.81V	2.71	2.81	2.91	
				3.79V	3.69	3.79	3.89	
				4.28V	4.18	4.28	4.38	
LVD hysteresys	LVHYS			1.91V		55		
width				2.01V		55		
				2.31V		55		
				2.51V		55		mV
				2.81V		60		
				3.79V		65		
				4.28V		65		
Detection voltage unknown state	LVUKS		• See Fig. 8. (Note 8-4)			0.7	0.95	V
Low voltage detection minimum width	TLVDW		• LVDET-0.5V • See Fig. 9.		0.2			ms
(Reply sensitivity)			671 1 1					

Note8-1: The LVD reset level can be selected out of 7 levels only when the LVD reset function is enabled.

Note8-2: LVD reset voltage specification values do not include hysteresis voltage.

Note8-3: LVD reset voltage may exceed its specification values when port output state changes and/or when a large current flows through port.

Note8-4: LVD is in an unknown state before transistors start operation.

Consumption Current Characteristics at Ta = -40 °C to +85 °C, $V_{SS}1 = 0V$

D	0	Pin/	0 - 155			Specification		
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Normal mode consumption current	IDDOP(1)	V _{DD} 1	FmCF=12MHz ceramic oscillation mode System clock set to 12MHz side Internal low speed and medium speed RC	2.7 to 5.5		7.4	13.0	
(Note 9-1) (Note 9-2)			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.7 to 3.6		4.4	8.1	
	IDDOP(2)		CF1=24MHz external clock System clock set to CF1 side Internal low speed and medium speed RC	3.0 to 5.5		9.7	16.2	
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	3.0 to 3.6		5.3	8.7	
	IDDOP(3)		FmCF=10MHz ceramic oscillation mode System clock set to 10MHz side Internal low speed and medium speed RC oscillation stopped.	2.2 to 5.5		6.6	11.9	
			Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.2 to 3.6		4.0	7.4	
	IDDOP(4)		FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side Internal low speed and medium speed RC	1.8 to 5.5		2.9	6.5	
			oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	1.8 to 3.6		2.2	4.2	mA
	IDDOP(5)		CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side	2.2 to 5.5		1.1	2.5	
			Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio	2.2 to 3.6		0.6	1.3	
	IDDOP(6)		FsX'tal=32.768kHz crystal oscillation mode Internal low speed RC oscillation stopped. System clock set to internal medium speed	1.8 to 5.5		0.6	1.7	
			RC oscillation. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	1.8 to 3.6		0.3	0.9	
	IDDOP(7)		FsX'tal=32.768kHz crystal oscillation mode Internal low speed and medium speed RC oscillation stopped.	2.7 to 5.5		5.0	9.1	
			System clock set to 8MHz with frequency variable RC oscillation 1/1 frequency division ratio	2.7 to 3.6		3.6	5.8	
	IDDOP(8)		External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC oscillation.	1.8 to 5.5		75	370	
			 Internal medium speed RC oscillation sopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	1.8 to 3.6		46	192	
	IDDOP(9)		External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC	5.0		75	176	μА
			oscillation. Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped.	3.3		46	115	
			1/1 frequency division ratio Ta=-10 to +50°C	2.5		35	85	

Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note9-2: The consumption current values do not include operational current of LVD function if not specified.

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Pin/	Conditions			Specification			
	5,	Remarks	23.13110110	V _{DD} [V]	min	typ	max	unit	
Normal mode consumption current	IDDOP(10)	V _{DD} 1	FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal low speed and medium speed RC	1.8 to 5.5		38	139		
(Note 9-1) (Note 9-2)			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	1.8 to 3.6		15	66		
	IDDOP(11)		FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side	5.0		38	101	μΑ	
			Internal low speed and medium speed RC oscillation stopped.	3.3		15	46		
			Frequency variable RC oscillation stopped. 1/2 frequency division ratio Ta=-10 to +50°C	2.5		9.0	28		
HALT mode consumption current (Note 9-1)	IDDHALT(1)		HALT mode FmCF=12MHz ceramic oscillation mode System clock set to 12MHz side Internal low speed and medium speed RC	2.7 to 5.5		3.1	5.6		
(Note 9-2)			oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.7 to 3.6		1.6	2.9		
	IDDHALT(2)		HALT mode CF1=24MHz external clock System clock set to CF1 side Internal low speed and medium speed RC	3.0 to 5.5		4.9	8.6		
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	3.0 to 3.6		2.3	3.8		
	IDDHALT(3)		HALT mode FmCF=10MHz ceramic oscillation mode System clock set to 10MHz side Internal low speed and medium speed RC	2.2 to 5.5		2.7	5.3		
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.2 to 3.6		1.4	2.6		
	IDDHALT(4)		HALT mode FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side Internal low speed and medium speed RC	1.8 to 5.5		1.4	3.5	mA	
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	1.8 to 3.6		0.7	1.3		
	IDDHALT(5)		HALT mode CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side	2.2 to 5.5		0.7	1.8		
			Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio	2.2 to 3.6		0.3	0.7		
	IDDHALT(6)		HALT mode FsX'tal=32.768kHz crystal oscillation mode Internal low speed RC oscillation stopped. System clock set to internal medium speed	1.8 to 5.5		0.4	1.1		
			RC oscillation Frequency variable RC oscillation stopped. 1/2 frequency division ratio	1.8 to 3.6		0.2	0.5		

Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note9-2: The consumption current values do not include operational current of LVD function if not specified.

Continued on next page.

Continued from preceding page.

	preceding page.	Pin/	0			Specif	fication	
Parameter	Symbol	remarks	Conditions	V _{DD} [V]	min	typ	max	unit
HALT mode consumption current (Note 9-1)	IDDHALT(7)	V _{DD} 1	HALT mode FsX'tal=32.768kHz crystal oscillation mode Internal low speed and medium speed RC oscillation stopped.	2.7 to 5.5		1.8	3.5	mA
(Note 9-2)			System clock set to 8MHz with frequency variable RC oscillation 1/1 frequency division ratio	2.7 to 3.6		1.1	2.0	
	IDDHALT(8)		HALT mode External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC	1.8 to 5.5		23	260	
			oscillation. Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	1.8 to 3.6		13	119	
	IDDHALT(9)		HALT mode External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC	5.0		23	65	
			oscillation. • Internal medium speed RC oscillation stopped.	3.3		13	35	
			Frequency variable RC oscillation stopped. 1/1 frequency division ratio Ta=-10 to +50°C	2.5		9.2	25	
	IDDHALT(10)		HALT mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal low speed and medium speed RC	1.8 to 5.5		25	112	
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	1.8 to 3.6		8.5	56	
	IDDHALT(11)		HALT mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side	5.0		25	69	μА
			Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped.	3.3		8.5	29	μΛ
			1/2 frequency division ratio Ta=-10 to +50°C	2.5		4.2	15	
HOLD mode	IDDHOLD(1)		HOLD mode	1.8 to 5.5		0.04	30	
consumption current			CF1=V _{DD} or open (External clock mode)	1.8 to 3.6		0.02	21	
(Note 9-1)	IDDHOLD(2)		HOLD mode	5.0		0.04	2.3	
(Note 9-2)			CF1=V _{DD} or open (External clock mode) Ta=-10 to +50°C	3.3		0.02	1.5	
			14-10101000	2.5		0.017	1.2	
	IDDHOLD(3)		HOLD mode	1.8 to 5.5		3.2	35	
			CF1=V _{DD} or open (External clock mode) LVD option selected	1.8 to 3.6		2.7	24	
	IDDHOLD(4)		HOLD mode	5.0		3.2	6.5	
			CF1=V _{DD} or open (External clock mode) Ta=-10 to +50°C	3.3		2.7	4.5	
			LVD option selected	2.5		2.5	4.2	
Timer HOLD	IDDHOLD(5)		Timer HOLD mode	1.8 to 5.5		22	106	
mode			FsX'tal=32.768 kHz crystal oscillation mode	1.8 to 3.6		7.5	45	
consumption current	IDDHOLD(6)		Timer HOLD mode	5.0		22	62	
(Note 9-1)			• FsX'tal=32.768kHz crystal oscillation mode	3.3		7.5	23	
(Note 9-2)	· • Ia=-10 to +50°C		2.5		2.9	12		

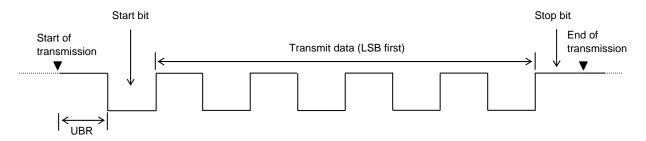
Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note9-2: The consumption current values do not include operational current of LVD function if not specified.

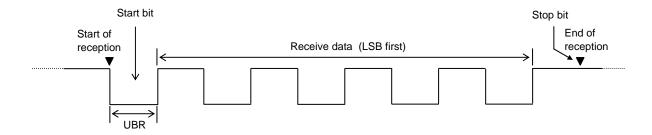
F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = 0V$

Doromotor	0	Dia/Damada	O and the man		Specification				
Parameter Symbol Pin/Re		Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Onboard	IDDFW(1)	V _{DD} 1	Only current of the Flash block.						
programming				2.2 to 5.5		5	10	mA	
current									
Programming	tFW(1)		Erasing time	0.04- 5.5		20	30	ms	
time	tFW(2)		Programming time	2.2 to 5.5		40	60	μs	

UART (Full Duplex) Operating Conditions at Ta = -40°C to +85°C, $V_{SS}1 = 0V$


D	O. made ad	Dia/Damada	O and distant			Specifi	cation	
Parameter Symbol Pin/Remarks		Conditions	V _{DD} [V]	min	typ	max	unit	
Transfer rate	UBR	UTX(P20) URX(P21)		1.8 to 5.5	16/3		8192/3	tCYC

Data length: 7/8/9 bits (LSB first)


Stop bits: 1 bit (2-bit in continuous data transmission)

Parity bits: None

Example of Continuous 8-bit Data Transmission Mode Processing (First Transmit Data=55H)

Example of Continuous 8-bit Data Reception Mode Processing (First Receive Data=55H)

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

• CF oscillation normal amplifier size selected (CFLAMP=0)

■MURATA

Nominal	_		Circuit Constant				Operating	Oscillation Stabilization Time		Remarks	
Frequency	Туре	Oscillator Name	C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Voltage Range [V]	typ [ms]	max [ms]	ivellidik?	
12MHz	SMD	CSTCE12M0G52-R0	(10)	(10)	Open	1.0k	2.7 to 5.5	0.1	0.5		
	CMD	SMD CSTCE10M0G52-R0 ((10) (10)	Open	680	2.2 to 3.6	0.1	0.5		
10MHz	SMD				Open	1.0k	2.3 to 5.5	0.1	0.5		
	LEAD	CSTLS10M0G53-B0	(15)	(15)	Open	1.0k	2.5 to 5.5	0.1	0.5		
	SMD	CSTCE8M00G52-R0	(10)	(10)	Open	1.5k	2.2 to 5.5	0.1	0.5		
8MHz	LEAD	CCTI COMOCCEO DO	(15)	(15)	Open	1.0k	2.2 to 3.6	0.1	0.5	Internal C4 C2	
	LEAD	AD CSTLS8M00G53-B0		(15)	Open	1.5k	2.4 to 5.5	0.1	0.5	Internal C1, C2	
CNAL I-	SMD	CSTCR6M00G53-R0	(15)	(15)	Open	2.2k	2.2 to 5.5	0.1	0.5		
6MHz	LEAD	CSTLS6M00G53-B0	(15)	(15)	Open	2.2k	2.2 to 5.5	0.1	0.5		
	SMD	CCTCD 4M00CE2 D0	(15)	(45)	Open	1.5k	1.8 to 2.7	0.2	0.6		
4MHz	SIVID	CSTCR4M00G53-R0		(15)	Open	3.3k	1.9 to 5.5	0.2	0.6		
	LEAD	CSTLS4M00G53-B0	(15)	(15)	Open	3.3k	1.9 to 5.5	0.2	0.6		

• CF oscillation low amplifier size selected (CFLAMP=1)

■MURATA

Nominal	T	Oppillator Name		Circuit (Constant		Operating Voltage	Oscillation Stabilization Time		Remarks
Frequency Type		Oscillator Name	C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Range [V]	typ [ms]	max [ms]	
		SMD CSTCR4M00G53-R0		(4.5)	Open	1.0k	2.3 to 2.7	0.2	0.6	
	SMD			(15)	Open	2.2k	2.5 to 5.5	0.2	0.6	
4MHz		CSTCR4M00G53095-R0	(15)	(15)	Open	1.0k	2.1 to 2.7	0.2	0.7	Internal
4IVITZ		OOTI 04M00050 D0	(45)	(45)	Open	1.0k	2.3 to 2.7	0.2	0.6	C1,C2
	LEAD	CSTLS4M00G53-B0	(15)	(15)	Open	2.2k	2.5 to 5.5	0.2	0.6	
		CSTLS4M00G53095-B0	(15)	(15)	Open	1.0k	2.1 to 2.7	0.2	0.7	

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Figure 3).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator

■EPSON TOYOCOM

Nominal	T	Oscillator		Circuit (Constant		Operating Voltage	Oscillation Stabilization Time			
Frequency	Туре	Name	C1	C2	Rf	Rd	Range	typ	max	Remarks	
			[pF]	[pF]	$[\Omega]$	$[\Omega]$	[V]	[s]	[s]		
										Applicable	
32.768kHz	SMD	MC-306	9	9	Open	330k	1.8 to 5.5	1.4	4.0	CL value =	
										7.0pF	

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the oscillation to get stabilized after the HOLD mode is reset (see Figure 3).

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

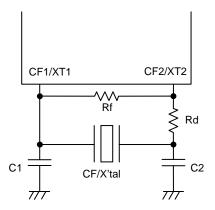


Figure 1 CF and XT Oscillator Circuit

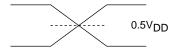
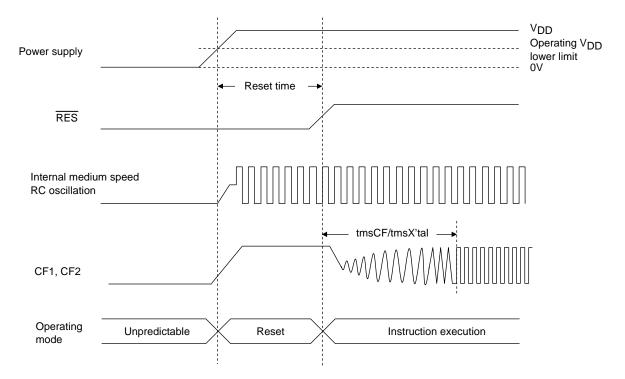
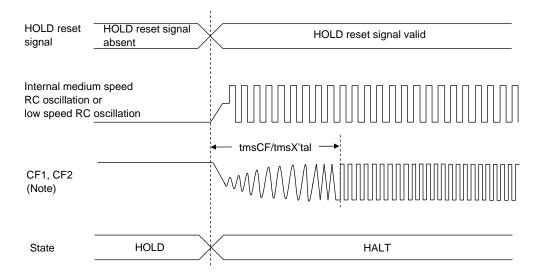
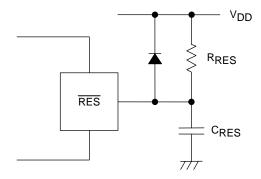




Figure 2 AC Timing Measurement Point


Reset Time and Oscillation Stabilization Time

HOLD Reset Signal and Oscillation Stabilization Time

Note: External oscillation circuit is selected.

Figure 3 Oscillation Stabilization Times

Note:

External circuits for reset may vary depending on the usage of POR and LVD. Please refer to the user's manual for more information.

Figure 4 Reset Circuit

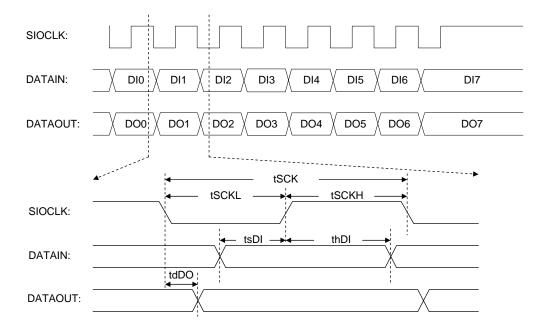


Figure 5 Serial I/O Output Waveforms

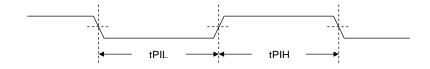


Figure 6 Pulse Input Timing Signal Waveform

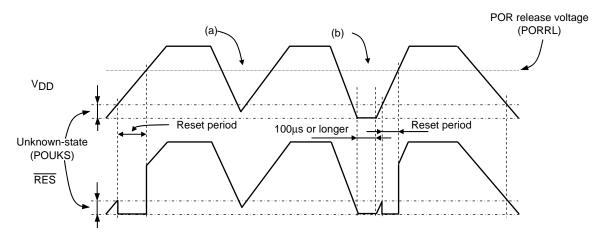


Figure 7 Waveform observed when only POR is used (LVD not used) (RESET pin: Pull-up resistor RRES only)

- The POR function generates a reset only when power is turned on starting at the VSS level.
- No stable reset will be generated if power is turned on again when the power level does not go down to the VSS level as shown in (a). If such a case is anticipated, use the LVD function together with the POR function or implement an external reset circuit.
- A reset is generated only when the power level goes down to the VSS level as shown in (b) and power is turned on again after this condition continues for 100µs or longer.

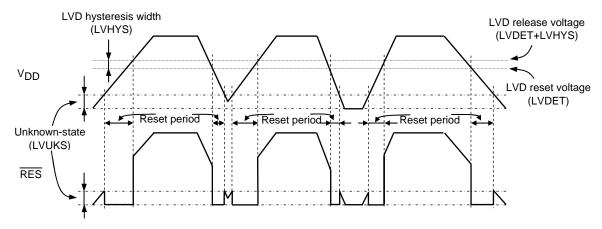


Figure 8 Waveform observed when both POR and LVD functions are used (RESET pin: Pull-up resistor R_{RES} only)

- Resets are generated both when power is turned on and when the power level lowers.
- A hysteresis width (LVHYS) is provided to prevent the repetitions of reset release and entry cycles near the detection level.

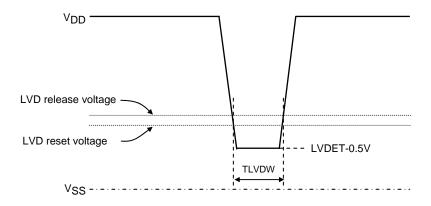


Figure 9 Low voltage detection minimum width (Example of momentary power loss/Voltage variation waveform)

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 8-bit Microcontrollers - MCU category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

CY8C20524-12PVXIT MB95F012KPFT-G-SNE2 MB95F013KPMC-G-SNE2 MB95F263KPF-G-SNE2 MB95F264KPFT-G-SNE2
MB95F398KPMC-G-SNE2 MB95F478KPMC2-G-SNE2 MB95F564KPF-G-SNE2 MB95F636KWQN-G-SNE1 MB95F696KPMC-G-SNE2
MB95F698KPMC2-G-SNE2 MB95F698KPMC-G-SNE2 MB95F818KPMC1-G-SNE2 901015X CY8C3MFIDOCK-125 403708R
MB95F354EPF-G-SNE2 MB95F564KWQN-G-SNE1 MB95F636KP-G-SH-SNE2 MB95F694KPMC-G-SNE2 MB95F778JPMC1-G-SNE2
MB95F818KPMC-G-SNE2 LC87F0G08AUJA-AH CP8361BT CG8421AF MB95F202KPF-G-SNE2 DF36014FPV 5962-8768407MUA
MB95F318EPMC-G-SNE2 MB94F601APMC1-GSE1 MB95F656EPF-G-SNE2 LC78615E-01US-H LC87F5WC8AVU-QIP-H
MB95F108AJSPMC-G-JNE1 73S1210F-68M/F/PJ MB89F538-101PMC-GE1 LC87F7DC8AVU-QIP-H MB95F876KPMC-G-SNE2
MB88386PMC-GS-BNDE1 LC87FBK08AU-SSOP-H LC87F2C64AU-QFP-H MB95F636KNWQN-G-118-SNE1 MB95F136NBSTPFV-GS-N2E1 LC87F5NC8AVU-QIP-E CY8C20324-12LQXIT LC87F76C8AU-TQFP-E CG8581AA LC87F2G08AU-SSOP-E CP8085AT
ATTINY3224-SSU