LC87F7DC8A

CMOS IC
FROM 128K byte, RAM 4K byte on-chip
8-bit 1-chip Microcontroller
ON Semiconductor ${ }^{\circledR}$
http:/lonsemi.com

Overview

The LC87F7DC8A is an 8-bit microcomputer that, centered around a CPU running at a minimum bus cycle time of 83.3ns, integrates on a single chip a number of hardware features such as 128 K -byte flash ROM (onboard programmable), 4K-byte RAM, an on-chip debugger, a LCD controller/driver, sophisticated 16-bit timer/counter (may be divided into 8-bit timers), a 16-bit timer/counter (may be divided into 8-bit timers/counters or 8-bit PWMs), four 8-bit timers with a prescaler, a 16-bit timer with a prescaler (may be divided into 8-bit timers), a base timer serving as a time-of-day clock, a day and time counter, a synchronous SIO interface (with automatic block transmission/reception capabilities), an asynchronous/synchronous SIO interface, two UART ports (full duplex), an 12-bit 15-channel AD converter, two 12-bit PWM channels, a high-speed clock counter, a system clock frequency divider, a small signal detector, two remote control receive functions, and a 31-source 10 -vector interrupt feature.

Features

■Flash ROM

- Capable of on-board-programming with wide range, 3.0 to 5.5 V , of voltage source.
- Block-erasable in 2-byte units
- 131072×8 bits

■RAM

- 4096×9 bits

■Minimum Bus Cycle Time

- 83.3ns (12MHz) $\mathrm{V}_{\mathrm{DD}}=3.0$ to 5.5 V
- 125ns (8 MHz$) \quad \mathrm{V}_{\mathrm{DD}}=2.5$ to 5.5 V
- 250ns (4MHz) $V_{D D}=2.2$ to 5.5 V

Note: The bus cycle time here refers to the ROM read speed.

[^0]■Minimum Instruction Cycle Time (tCYC)

- $250 \mathrm{~ns}(12 \mathrm{MHz}) \quad \mathrm{V}_{\mathrm{DD}}=3.0$ to 5.5 V
- 375ns (8MHz) $\mathrm{V}_{\mathrm{DD}}=2.5$ to 5.5 V
- 750ns (4MHz) $V_{D D}=2.2$ to 5.5 V
- Ports
- Normal withstand voltage I/O ports

Ports whose I/O direction can be designated in 1 bit units 29 (P0n, P1n, P70 to P73, P8n, XT2)

- Normal withstand voltage input port 1 (XT1)
- LCD ports

Segment output
54 (S00 to S53)
Common output
4 (COM0 to COM3)
Bias terminals for LCD driver
3 (V1 to V3)
Other functions
Input/output ports
Input ports

- Dedicated oscillator ports
- Reset pin

54 (P3n, PAn, PBn, PCn, PDn, PEn, PFn,)
7 (PLn)

- Power pins

2 (CF1, CF2)
1 ($\overline{\mathrm{RES}})$
$6\left(\mathrm{~V}_{\mathrm{SS}} 1\right.$ to $\mathrm{V}_{\mathrm{SS}} 3, \mathrm{~V}_{\mathrm{DD}} 1$ to $\mathrm{V}_{\mathrm{DD}} 3$)

LCD Controller

1) Seven display modes are available (static, $1 / 2,1 / 3,1 / 4$ duty $\times 1 / 2,1 / 3$ bias)
2) Segment output and common output can be switched to general-purpose input/output ports

■Small Signal Detection (MIC signals etc)

1) Counts pulses with the level which is greater than a preset value
2) 2-bit counter

Timers

- Timer 0: 16-bit timer/counter with two capture registers.

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers) $\times 2$ channels
Mode 1: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers) +8 -bit counter (with two 8-bit capture registers)
Mode 2: 16-bit timer with an 8-bit programmable prescaler (with two 16-bit capture registers)
Mode 3: 16-bit counter (with two 16-bit capture registers)

- Timer 1: 16-bit timer/counter that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs)
+8 -bit timer/counter with an 8-bit prescaler (with toggle outputs)
Mode 1: 8 -bit PWM with an 8 -bit prescaler $\times 2$ channels
Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)
(toggle outputs also possible from the lower-order 8 bits)
Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs) (The lower-order 8 bits can be used as PWM.)

- Timer 4: 8-bit timer with a 6-bit prescaler
- Timer 5: 8-bit timer with a 6-bit prescaler
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer 8: 16-bit timer

Mode 0: 8-bit timer with an 8 -bit prescaler $\times 2$ channels
Mode 1: 16 -bit timer with an 8 -bit prescaler

- Base timer

1) The clock is selectable from the subclock (32.768 kHz crystal oscillation), system clock, and timer 0 prescaler output.
2) Interrupts programmable in 5 different time schemes

- Day and time counter

1) Using with a base timer, it can be used as 65000 day + minute + second counter.

■High-speed Clock Counter

1) Can count clocks with a maximum clock rate of 20 MHz (at a main clock of 10 MHz).
2) Can generate output real-time.

SIO

- SIO0: 8-bit synchronous serial interface

1) LSB first/MSB first mode selectable
2) Built-in 8 -bit baudrate generator (maximum transfer clock cycle $=4 / 3 \mathrm{tCYC}$)
3) Automatic continuous data transmission (1 to 256 bits specifiable in 1-bit units, suspension and resumption of data transmission possible in 1-byte units)

- SIO1: 8-bit asynchronous/synchronous serial interface

Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
Mode 1: Asynchronous serial I/O (half-duplex, 8-data bits, 1-stop bit, 8 to 2048 tCYC baudrates)
Mode 2: Bus mode 1 (start bit, 8-data bits, 2 to 512 tCYC transfer clocks)
Mode 3: Bus mode 2 (start detect, 8-data bits, stop detect)

- Full duplex
- 7/8/9 bit data bits selectable
- 1 stop bit (2-bit in continuous data transmission)
- Built-in baudrate generator

UART2

- Full duplex
- 7/8/9 bit data bits selectable
- 1 stop bit (2-bit in continuous data transmission)
- Built-in baudrate generator

■AD Converter: 12 bits $\times 15$ channels

PWM: Multi frequency 12-bit PWM $\times 2$ channels

Remote Control Receiver Circuit1

1) Noise rejection function
(Units of noise rejection filter: about $120 \mu \mathrm{~s}$, when selecting a 32.768 kHz crystal oscillator as a clock.)
2) Supporting reception formats with a guide-pulse of half-clock/clock/none.
3) Determines a end of reception by detecting a no-signal periods (No carrier).
(Supports same reception format with a different bit length.)
4) X'tal HOLD mode release function

Remote Control Receiver Circuit2

1) Noise rejection function
(Units of noise rejection filter: about $120 \mu \mathrm{~s}$, when selecting a 32.768 kHz crystal oscillator as a clock.)
2) Supporting reception formats with a guide-pulse of half-clock/clock/none.
3) Determines a end of reception by detecting a no-signal periods (No carrier).
(Supports same reception format with a different bit length.)
4) X'tal HOLD mode release function

■Watchdog Timer

- External RC watchdog timer
- Interrupt and reset signals selectable

■Clock Output Function

1) Able to output selected oscillation clock $1 / 1,1 / 2,1 / 4,1 / 8,1 / 16,1 / 32,1 / 64$ as system clock.
2) Able to output oscillation clock of sub clock.

Interrupts

- 31 sources, 10 vector addresses

1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INTO
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/TOL/INT4/remote control receiver1
4	0001BH	H or L	INT3/base timer/INT5/remote control receiver2
5	00023H	H or L	TOH/INT6
6	0002BH	H or L	T1L/T1H/INT7
7	00033H	H or L	SIOO/UART1 receive/UART2 receive/T8L/T8H
8	0003BH	H or L	SIO1/UART1 transmit/UART2 transmit
9	00043H	H or L	ADC/MIC/T6/T7/PWM4/PWM5
10	0004BH	H or L	Port 0/T4/T5

- Priority levels X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- IFLG (List of interrupt source flag function)

1) Shows a list of interrupt source flags that caused a branching to a particular vector address (shown in the diagram above).

■Subroutine Stack Levels: 2048 levels (The stack is allocated in RAM.)
■High-speed Multiplication/Division Instructions

- 16 bits $\times 8$ bits (5 tCYC execution time)
- 24 bits $\times 16$ bits (12 tCYC execution time)
- 16 bits $\div 8$ bits (8 tCYC execution time)
- 24 bits $\div 16$ bits (12 tCYC execution time)

■Oscillation Circuits

- RC oscillation circuit (internal): For system clock
- CF oscillation circuit: For system clock, with internal Rf
- Crystal oscillation circuit: For low-speed system clock, with internal Rf
- Frequency variable RC oscillation circuit (internal): For system clock

1) Adjustable in $\pm 4 \%$ (typ.) step from a selected center frequency.
2) Measures oscillation clock using a input signal from XT1 as a reference.

■System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from $300 \mathrm{~ns}, 600 \mathrm{~ns}, 1.2 \mu \mathrm{~s}, 2.4 \mu \mathrm{~s}, 4.8 \mu \mathrm{~s}, 9.6 \mu \mathrm{~s}, 19.2 \mu \mathrm{~s}, 38.4 \mu \mathrm{~s}$, and $76.8 \mu \mathrm{~s}$ (at a main clock rate of 10 MHz).
-Standby Function
- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
(Some parts of the serial transfer function stops operation.)

1) Oscillation is not halted automatically.
2) Canceled by a system reset or occurrence of an interrupt

Continued from preceding page.

- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.

1) The CF, RC, X'tal, and frequency variable RC oscillators automatically stop operation.
2) There are three ways of resetting the HOLD mode.
(1) Setting the reset pin to the low level
(2) Setting at least one of the INT0, INT1, INT2, INT4, and INT5 pins to the specified level
(3) Having an interrupt source established at port 0

- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer and the remote control receiver circuit.

1) The CF, RC, and frequency variable RC oscillators automatically stop operation.
2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
3) There are five ways of resetting the X 'tal HOLD mode.
(1) Setting the reset pin to the low level
(2) Setting at least one of the INT0, INT1, INT2, INT4, and INT5 pins to the specified level
(3) Having an interrupt source established at port 0
(4) Having an interrupt source established in the base timer circuit
(5) Having an interrupt source established in the remote control receiver circuit

■On-chip Debugger

- Supports software debugging with the IC mounted on the target board.

■Package Form

- QIP100E($14 \times 20):$ Lead-free type
- TQFP100(14×14): Lead-free type/Halogen-free type

■ Development Tools

- On-chip debugger: TCB87-TypeB + LC87F7DC8A

■Flash ROM Programming Boards

Package	Programming boards
QIP100E (14×20)	W87FQ100
TQFP100 (14×14)	W87FSQ100

Flash ROM Programmer

Maker		Model	Supported version	Device
Flash Support Group, Inc. (FSG)	Single	AF9708 AF9709/AF9709B/AF9709C (Including product of Ando Electric Co., Ltd)	(Note 2)	

Note 1: With the FSG onboard programmer (AF9101/AF9103) and the serial interface driver provided by Our company, PC-less standalone onboard programming is possible
Note 2: Depending on programming conditions, it is necessary to use a dedicated programming device and a program.
Please contact Our company or FSG if you have any questions or difficulties regarding this matter.

Package Dimensions

unit : mm (typ)
3151A

Package Dimensions

unit : mm (typ)
3274

Pin Assignments

QIP100E(14×20) "Lead-free Type"

TQFP100(14×14) "Lead-free type/Halogen-free type"

System Block Diagram

Pin Description

Pin Name	I/O	Description						Option
$\begin{aligned} & \mathrm{v}_{\mathrm{SS}} 1 \\ & \mathrm{v}_{\mathrm{SS}}{ }^{2} \\ & \mathrm{v}_{\mathrm{SS}^{3}} \end{aligned}$	-	- power supply pin						No
$\begin{aligned} & \mathrm{v}_{\mathrm{DD}} 1 \\ & \mathrm{v}_{\mathrm{DD}}{ }^{2} \\ & \mathrm{v}_{\mathrm{DD}}{ }^{3} \end{aligned}$	-	+ power supply pin						No
Port 0	I/O	- 8-bit I/O port - I/O specifiable in 1-bit units - Pull-up resistors can be turned on and off in 1-bit units. - Input for HOLD release - Input for port 0 interrupt - Shared pins P03: INT6 input P04: INT7 input P05: Clock output (system clock/can selected from sub clock) P06: Timer 6 toggle output P07: Timer 7 toggle output On chip debugger pins: DBGP0 to DBGP2(P00 to P02)						Yes
Port 1	I/O	- 8-bit I/O port - I/O specifiable in 1-bit units - Pull-up resistors can be turned on and off in 1-bit units. - Shared pins P10: SIOO data output P11: SIOO data input/bus I/O P12: SIOO clock I/O P13: SIO1 data output P14: SIO1 data input/bus I/O P15: SIO1 clock I/O P16: Timer 1PWML output P17: Timer 1PWMH output/beeper output						Yes
P10 to P17								
Port 3	I/O	- 6-bit I/O port - Segment output for LCD - I/O specifiable in 1-bit units - Pull-up resistors can be turned on and off in 1-bit units. - Shared pins P30 to P33: INT4 input/HOLD release input/timer 1 event input/timer OL capture input/ timer 0 H capture input P34 to P35: INT5 input/HOLD release input/timer 1 event input/timer OL capture input/ timer OH capture input P30: PWM4 output/INT6 input/timer OL capture 1 input P31: PWM5 output P32: UART1 transmit P33: UART1 receive P34: UART2 transmit/INT7 input/timer OH capture 1 input P35: UART2 receive Interrupt acknowledge type						Yes
P30 to P35								

Continued on next page.

LC87F7DC8A
Continued from preceding page.

Pin Name	I/O	Description						Option
Port 7	I/O	- 4-bit I/O port - I/O specifiable in 1-bit units - Pull-up resistors can be turned on and off in 1-bit units. - Shared pins P70: INT0 input/HOLD release input/timer OL capture input/watchdog timer output P71: INT1 input/HOLD release input/timer 0 H capture input P72: INT2 input/HOLD release input/timer 0 event input/timer OL capture input/ high speed clock counter input P73: INT3 input (with noise filter)/timer 0 event input/timer OH capture input/ remote control receiver input AD converter input ports: AN8 (P70), AN9 (P71) Interrupt acknowledge type						No
P70 to P73								
Port 8	1/O	- 8-bit I/O port - I/O specifiable in 1-bit units - Shared pins AD converter input ports: ANO to AN7 Small signal detector input port: MICIN (P87)						No
P80 to P87								
S0/PA0 to S7/PA7	I/O	- Segment output for LCD - Can be used as general-purpose I/O port (PA)						No
S8/PB0 to S15/PB7	I/O	- Segment output for LCD - Can be used as general-purpose I/O port (PB)						No
$\begin{aligned} & \text { S16/PC0 to } \\ & \text { S23/PC7 } \end{aligned}$	I/O	- Segment output for LCD - Can be used as general-purpose I/O port (PC)						No
S24/PD0 to S31/PD7	I/O	- Segment output for LCD - Can be used as general-purpose I/O port (PD)						No
S32/PE0 to S39/PE7	1/O	- Segment output for LCD - Can be used as general-purpose I/O port (PE)						No
S40/PF0 to S47/PF7	I/O	- Segment output for LCD - Can be used as general-purpose I/O port (PF) PF6: INT6 input PF7: INT7 input						No
COMO/PLO to COM3/PL3	I/O	- Common output for LCD - Can be used as general-purpose input port (PL)						No
V1/PL4 to V3/PL6	I/O	- LCD output bias power supply - Can be used as general-purpose input port (PL) - Shared pins AD converter input ports: AN12 (V1) to AN14 (V3) On-chip debugger pins: DBGP0 (V1) to DBGP2 (V3)						No
$\overline{\mathrm{RES}}$	Input	Reset pin						No
XT1	Input	- 32.768 kHz crystal oscillator input pin - Shared pins General-purpose input port AD converter input port: AN10 Must be connected to $\mathrm{V}_{\mathrm{DD}} 1$ if not to be used.						No
XT2	I/O	- 32.768 kHz crystal oscillator output pin - Shared pins General-purpose I/O port AD converter input port: AN11 Must be set for oscillation and kept open if not to be used.						No
CF1	Input	Ceramic resonator input pin						No
CF2	Output	Ceramic resonator output pin						No

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.
Data can be read into any input port even if it is in the output mode.

Port Name	Option Selected in Units of	Option Type		
P00 to P07	each bit	1	CMOS	Pull-up Resistor
		2	Nch-open drain	Programmable
P10 to P17	each bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P30 to P35	each bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable
P71 to P73	-	No	CMOS	No
P80 to P87	-	No	Nch-open drain	Nograbrammable
S0/PA0 to S47/PF7	-	No	CMOS	No
COM0/PL0 to COM3/PL3	-	No	Input only	No
V1/PL4 to V3/PL6	-	No	Input only	No
XT1	-	No	Input only	
XT2	-	No	Output for 32.768kHz crystal oscillator (Nch-open drain when in general-purpose output mode)	

User Option List

Option Name	Option Type	Mask Version *1	Flash Version	Option Selected in Units of	Specified item
Port output form	P00 to P07	0	0	each bit	CMOS
					Nch-open drain
	P10 to P17	0	0	each bit	CMOS
					Nch-open drain
	P30 to P35	\bigcirc	\bigcirc	each bit	CMOS
					Nch-open drain
Program start address	-	\times	0	-	00000H
		*2			1FFOOH

*1: Mask option selection - No change possible after the mask is completed.
*2: Program start address of the mask version is 00000h.

*1 Connect the IC as shown below to minimize the noise input to the $\mathrm{V}_{\mathrm{DD}} 1$ pin.
Be sure to electrically short the $\mathrm{V}_{\mathrm{SS}} 1, \mathrm{~V}_{\mathrm{SS}} 2$, and $\mathrm{V}_{\mathrm{SS}} 3$ pins.
*2 The internal memory is sustained by $\mathrm{V}_{\mathrm{DD}} 1$. If none of $\mathrm{V}_{\mathrm{DD}} 2$ and $\mathrm{V}_{\mathrm{DD}} 3$ are backed up, the high level output at the ports are unstable in the HOLD backup mode, allowing through current to flow into the input buffer and thus shortening the backup time.
Make sure that the port outputs are held at the low level in the HOLD backup mode.

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}$ SS $1=\mathrm{VSS} 2=\mathrm{VSS} 3=0 \mathrm{~V}$

Parameter		Symbol	Pin/Remarks	Conditions		Specification				
		$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$			min	typ	max	unit		
Maximum supply voltage			$\mathrm{V}_{\text {DD }}$ max	$\mathrm{V}_{\mathrm{DD}}{ }^{1}, \mathrm{~V}_{\mathrm{DD}}{ }^{2}, \mathrm{~V}_{\mathrm{DD}}{ }^{3}$	$\mathrm{V}_{\mathrm{DD}}{ }^{1}=\mathrm{V}_{\mathrm{DD}}{ }^{2}=\mathrm{V}_{\text {DD }}{ }^{3}$		-0.3		+6.5	
supply voltage for LCD		VLCD	V1/PL4, V2/PL5, V3/PL6	$\mathrm{V}_{\mathrm{DD}}{ }^{1}=\mathrm{V}_{\mathrm{DD}}{ }^{2}=\mathrm{V}_{\mathrm{DD}}{ }^{3}$		-0.3		$V_{\text {DD }}$		
Input voltage		$\mathrm{V}_{\mathrm{l}}(1)$	Port L XT1, CF1, $\overline{R E S}$			-0.3		$V_{D D}+0.3$	V	
Input/output voltage		$\mathrm{V}_{\mathrm{IO}}(1)$	Ports 0, 1, 3, 7, 8 Ports A, B, C Ports D, E, F XT2			-0.3		$V_{D D}+0.3$		
	Peak output current	$\mathrm{IOPH}(1)$	Ports 0, 1, 32 to 35	- CMOS output selected - Current at each pin		-10			mA	
		IOPH(2)	Ports 30, 31	- CMOS output selected - Current at each pin		-20				
		IOPH(3)	Ports 71 to 73	Current at each pin		-5				
		$\mathrm{IOPH}(4)$	Ports A, B, C Ports D, E, F	Current at each pin		-5				
	Mean output current (Note 1-1)	$\mathrm{IOMH}(1)$	Ports 0, 1, 32 to 35	- CMOS output selected - Current at each pin		-7.5				
		IOMH(2)	Ports 30, 31	- CMOS output selected - Current at each pin		-15				
		IOMH(3)	Ports 71 to 73	Current at each pin		-3				
		IOMH(4)	Ports A, B, C Ports D, E, F	Current at each pin		-3				
	Total output current	EIOAH(1)	Ports 0, 1, 32 to 35	Total of all pins		-25				
		ऽIOAH(2)	Ports 30, 31	Total of all pins		-25				
		EIOAH(3)	Ports 0, 1, 3	Total of all pins		-45				
		EIOAH(4)	Ports 71 to 73	Total of all pins		-5				
		£IOAH(5)	Ports A, B, C	Total of all pins		-25				
		EIOAH(6)	Ports D, E, F	Total of all pins		-25				
		£IOAH(7)	Ports A, B, C Ports D, E, F	Total of all pins		-45				
	Peak output current	IOPL(1)	Ports 0, 1, 32 to 35	Current at each pin				20		
		IOPL(2)	Ports 30, 31	Current at each pin				30		
		IOPL(3)	$\begin{aligned} & \text { Ports 7, } 8 \\ & \text { XT2 } \\ & \hline \end{aligned}$	Current at each pin				10		
		IOPL(4)	Ports A, B, C Ports D, E, F	Current at each pin				10		
	Mean output current (Note 1-1)	IOML(1)	Ports 0, 1, 32 to 35	Current at each pin				15		
		IOML(2)	Ports 30, 31	Current at each pin				20		
		IOML(3)	$\begin{aligned} & \text { Ports 7, } 8 \\ & \text { XT2 } \\ & \hline \end{aligned}$	Current at each pin				7.5		
		IOML(4)	Ports A, B, C Ports D, E, F	Current at each pin				7.5		
	Total output current	EIOAL(1)	Ports 0, 1, 32 to 35	Total of all pins				45		
		EIOAL(2)	Ports 30, 31	Total of all pins				45		
		EIOAL(3)	Ports 0, 1, 3	Total of all pins				80		
		ᄃIOAL(4)	$\begin{aligned} & \text { Ports 7, } 8 \\ & \text { XT2 } \end{aligned}$	Total of all pins				20		
		EIOAL(5)	Ports A, B, C	Total of all pins				45		
		EIOAL(6)	Ports D, E, F	Total of all pins				45		
		EIOAL(7)	Ports A, B, C Ports D, E, F	Total of all pins				80		
Maximum power dissipation		Pd max	QIP100E(14×20)	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$					mW	
		TQFP100(14×14)	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$							

Note 1-1: The mean output current is a mean value measured over 100 ms .

Continued from preceding page.

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\text {DD }}[\mathrm{V}]$	min	typ	max	unit
Operating ambient temperature	Topr				-40		+85	C
Storage ambient temperature	Tstg				-55		+125	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Range at $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VSS} 1=\mathrm{VSS} 2=\mathrm{VSS} 3=0 \mathrm{~V}$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
Operating supply voltage (Note 2-1)	$\mathrm{V}_{\mathrm{DD}}(1)$	$\mathrm{V}_{D D^{1}}=\mathrm{V}_{D D^{2}}=\mathrm{V}_{D D^{3}}$	$0.237 \mu \mathrm{~s} \leq \mathrm{tCYC} \leq 200 \mu \mathrm{~s}$		3.0		5.5	V
	$\mathrm{V}_{\mathrm{DD}}(2)$		$0.356 \mu \mathrm{~s} \leq \mathrm{tCYC} \leq 200 \mu \mathrm{~s}$		2.5		5.5	
	$\mathrm{V}_{\mathrm{DD}}(3)$		$0.712 \mu \mathrm{~s} \leq \mathrm{tCYC} \leq 200 \mu \mathrm{~s}$		2.2		5.5	
Memory sustaining supply voltage	VHD	$\mathrm{V}_{\mathrm{DD}}{ }^{1}$	RAM and register contents sustained in HOLD mode.		2.0		5.5	
High level input voltage	$\mathrm{V}_{\mathrm{IH}}(1)$	Ports 0, 3, 8 Ports A, B, C, D, E, F Port L	Output disabled	2.2 to 5.5	$\begin{array}{r} 0.3 \mathrm{~V}_{\mathrm{DD}} \\ +0.7 \end{array}$		$V_{\text {DD }}$	
	$\mathrm{V}_{\mathrm{IH}}(2)$	Port 1 Ports 71 to 73 P70 port input/ interrupt side	- Output disabled - When INT1VTSL=0 (P71 only)	2.2 to 5.5	$\begin{array}{r} 0.3 \mathrm{~V}_{\mathrm{DD}} \\ +0.7 \end{array}$		$V_{\text {DD }}$	
	$\mathrm{V}_{\mathrm{IH}}(3)$	P71 interrupt side	- Output disabled - When INT1VTSL=1	2.2 to 5.5	$0^{0.85 V} \mathrm{~V}_{\text {D }}$		$V_{\text {DD }}$	
	$\mathrm{V}_{\mathrm{IH}}(4)$	P87 small signal input side	Output disabled	2.2 to 5.5	$0.75 \mathrm{~V}_{\mathrm{DD}}$		$V_{\text {DD }}$	
	$\mathrm{V}_{\mathrm{IH}}(5)$	P70 watchdog timer side	Output disabled	2.2 to 5.5	0.9V $\mathrm{V}_{\text {D }}$		VDD	
	$\mathrm{V}_{\mathrm{IH}}(6)$	XT1,XT2,CF1, $\overline{\text { RES }}$		2.2 to 5.5	$0.75 \mathrm{~V}_{\text {DD }}$		$V_{\text {DD }}$	
Low level input voltage	$\mathrm{V}_{\text {IL }}(1)$	Ports 0, 3, 8 Ports A, B, C, D, E, F Port L	Output disabled	4.0 to 5.5	$\mathrm{V}_{\text {SS }}$		$\begin{array}{r} 0.15 \mathrm{~V}_{\mathrm{DD}} \\ +0.4 \\ \hline \end{array}$	
				2.2 to 4.0	$\mathrm{V}_{\text {SS }}$		$0.2 \mathrm{~V}_{\text {DD }}$	
	$\mathrm{V}_{\text {IL }}(2)$	Port 1 Ports 71 to 73 P70 port input/ interrupt side	- Output disabled - When INT1VTSL=0 (P71 only)	4.0 to 5.5	$\mathrm{V}_{\text {SS }}$		$\begin{array}{r} 0.1 \mathrm{~V}_{\mathrm{DD}} \\ +0.4 \\ \hline \end{array}$	
				2.2 to 4.0	VSS		$0.2 V_{\text {DD }}$	
	$\mathrm{V}_{\mathrm{IL}}(3)$	P71 interrupt side	- Output disabled - When INT1VTSL=1	2.2 to 5.5	VSS		$0.45 V_{\text {DD }}$	
	$\mathrm{V}_{\mathrm{IL}}(4)$	P87 small signal input side	Output disabled	2.2 to 5.5	$\mathrm{v}_{\text {SS }}$		$0.25 V_{\text {DD }}$	
	$\mathrm{V}_{\mathrm{IL}}(5)$	P70 watchdog timer side	Output disabled	2.2 to 5.5	VSS		$\begin{array}{r} 0.8 \mathrm{~V}_{\mathrm{DD}} \\ -1.0 \\ \hline \end{array}$	
	$\mathrm{V}_{\text {IL }}(6)$	XT1,XT2,CF1, $\overline{\text { RES }}$		2.2 to 5.5	$\mathrm{V}_{\text {SS }}$		$0.25 \mathrm{~V}_{\mathrm{DD}}$	
Instruction cycle time (Note 2-2)	tCYC			3.0 to 5.5	0.237		200	
				2.5 to 5.5	0.356		200	$\mu \mathrm{S}$
				2.2 to 5.5	0.712		200	
External system clock frequency	FEXCF(1)	CF1	- CF2 pin open - System clock frequency division ratio=1/1 - External system clock duty=50 $\pm 5 \%$	3.0 to 5.5	0.1		12	MHz
				2.5 to 5.5	0.1		8	
				2.2 to 5.5	0.1		4	
			- CF2 pin open - System clock frequency division ratio=1/2	3.0 to 5.5	0.2		24.4	
				2.5 to 5.5	0.2		16	
				2.2 to 5.5	0.2		8	

Note 2-1: VDD must be held greater than or equal to 3.0 V in the flash ROM onboard programming mode.
Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of $1 / 1$ and $6 / \mathrm{FmCF}$ at a division ratio of $1 / 2$.

Continued on next page.

Continued from preceding page.

Note 2-3: See Tables 1 and 2 for the oscillation constants.
Electrical Characteristics at $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VSS} 1=\mathrm{V}$ SS $2=\mathrm{VSS} 3=0 \mathrm{~V}$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
High level input current	${ }^{1 / H}(1)$	Ports 0, 1, 3, 7, 8 Ports A, B, C Ports D, E, F Port L	- Output disabled - Pull-up resistor off - $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ (Including output Tr's off leakage current)	2.2 to 5.5			1	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{IH}}(2)$	$\overline{\mathrm{RES}}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	2.2 to 5.5			1	
	${ }_{1 / \mathrm{H}}(3)$	XT1, XT2	- For input port specification - $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	2.2 to 5.5			1	
	$\mathrm{IIH}^{(4)}$	CF1	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	2.2 to 5.5			15	
	${ }_{1 / \mathrm{H}}(5)$	P87 small signal input side	$\mathrm{V}_{\mathrm{IN}}=\mathrm{VBIS}+0.5 \mathrm{~V}$ (VBIS: Bias voltage)	4.5 to 5.5	4.2	8.5	15	
				2.2 to 4.5	1.5	5.5	10	
Low level input current	$\mathrm{I}_{\text {IL }}(1)$	Ports 0, 1, 3, 7, 8 Ports A, B, C Ports D, E, F Port L	- Output disabled - Pull-up resistor off - $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ (Including output Tr's off leakage current)	2.2 to 5.5	-1			
	IIL(2)	$\overline{\mathrm{RES}}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	2.2 to 5.5	-1			
	IIL (3)	XT1, XT2	- For input port specification - $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	2.2 to 5.5	-1			
	$\mathrm{I}_{\text {IL }}(4)$	CF1	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	2.2 to 5.5	-15			
	$\mathrm{I}_{\text {IL }}(5)$	P87 small signal	$\mathrm{V}_{\text {IN }}=$ VBIS -0.5 V	4.5 to 5.5	-15	-8.5	-4.2	
		input side	(VBIS : Bias voltage)	2.2 to 4.5	-10	-5.5	-1.5	

Continued on next page.

LC87F7DC8A
Continued from preceding page.

Serial I/O Characteristics at $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VSS} 1=\mathrm{VSS} 2=\mathrm{VSS} 3=0 \mathrm{~V}$

1. SIOO Serial I/O Characteristics (Note 4-1-1)

Parameter			Symbol	Pin/Remarks	Conditions		Specification				
			$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$			min	typ	max	unit		
	$\begin{aligned} & \text { ㅡㅡ } \\ & \text { 응 } \\ & \text { 士訁 } \\ & \text { I } \end{aligned}$	Frequency		tSCK(1)	SCKO(P12)	See Fig. 6.	2.2 to 5.5	2			tCYC
		Low level pulse width	tSCKL(1)	1							
		High level	tSCKH(1)	1							
			tSCKHA(1)	- Continuous data transmission/reception mode - See Fig. 6. - (Note 4-1-2)		4					
	$\begin{aligned} & \text { 므 } \\ & \text { O} \\ & \text { I } \\ & \text { D} \\ & 0 \end{aligned}$	Frequency	tSCK(2)	SCK0(P12)	- CMOS output selected - See Fig. 6.	2.2 to 5.5	4/3				
		Low level pulse width	tSCKL (2)				1/2			tSCK	
		High level pulse width	tSCKH(2)				1/2				
			tSCKHA(2)		- Continuous data transmission/reception mode - CMOS output selected - See Fig. 6.		$\begin{array}{r} \text { tSCKH(2) } \\ +2 \mathrm{tCYC} \end{array}$		$\begin{array}{r} \mathrm{tSCKH}(2) \\ +(10 / 3) \\ \mathrm{tCYC} \end{array}$	tCYC	
	Data setup time		tsDI(1)	$\begin{aligned} & \text { SBO(P11), } \\ & \text { SIO(P11) } \end{aligned}$	- Must be specified with respect to rising edge of SIOCLK. - See Fig. 6.	2.2 to 5.5	0.03			$\mu \mathrm{s}$	
	Data hold time		thDI(1)			2.2 to 5.5	0.03				
		Output delay time	tdD0(1)	$\begin{aligned} & \text { SOO(P10), } \\ & \text { SB0(P11) } \end{aligned}$	- Continuous data transmission/reception mode - (Note 4-1-3)	2.2 to 5.5			$\begin{array}{r} (1 / 3) \mathrm{tCYC} \\ +0.05 \end{array}$		
			tdD0(2)		- Synchronous 8-bit mode - (Note 4-1-3)	2.2 to 5.5			$\begin{array}{r} 1 \mathrm{tCYC} \\ +0.05 \end{array}$		
			tdD0(3)		(Note 4-1-3)	2.2 to 5.5			$\begin{array}{r} (1 / 3) \mathrm{tCYC} \\ +0.05 \end{array}$		

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.
Note 4-1-2: To use serial-clock-input in continuous trans/rec mode, a time from SIORUN being set when serial clock is " H " to the first negative edge of the serial clock must be longer than tSCKHA.
Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.
2. SIO1 Serial I/O Characteristics (Note 4-2-1)

Parameter			Symbol	Pin/Remarks	Conditions		Specification				
			$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$			min	typ	max	unit		
$\begin{aligned} & \text { 믕 } \\ & \text { 응 } \\ & \stackrel{\pi}{0} \\ & \text { 心 } \end{aligned}$	$\begin{aligned} & \text { ㅡㅡ } \\ & \text { 응 } \\ & \text { 士 } \\ & \text { O} \end{aligned}$	Frequency		tSCK(3)	SCK1(P15)	See Fig. 6.	2.2 to 5.5	2			tCYC
		Low level pulse width	tSCKL(3)	1							
		High level pulse width	tSCKH(3)	1							
		Frequency	tSCK(4)	SCK1(P15)	- CMOS output selected - See Fig. 6.	2.2 to 5.5	2				
		Low level pulse width	tSCKL(4)				1/2			tSCK	
		High level pulse width	tSCKH(4)				1/2				
	Data setup time		tsDI(2)	$\begin{aligned} & \hline \text { SB1(P14), } \\ & \text { SI1(P14) } \end{aligned}$	- Must be specified with respect to rising edge of SIOCLK. - See Fig. 6.	2.2 to 5.5	0.03				
	Data hold time		thDI(2)			2.2 to 5.5	0.03				
		put delay time	tdD0(4)	$\begin{aligned} & \text { SO1(P13), } \\ & \text { SB1(P14) } \end{aligned}$	- Must be specified with respect to falling edge of SIOCLK. - Must be specified as the time to the beginning of output state change in open drain output mode. - See Fig. 6.	2.2 to 5.5			$\begin{array}{r} (1 / 3) \mathrm{tCYC} \\ +0.05 \end{array}$	$\mu \mathrm{s}$	

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.
Pulse Input Conditions at $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VSS} 1=\mathrm{V}$ SS $2=\mathrm{V}$ SS $3=0 \mathrm{~V}$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
High/low level pulse width	$\begin{aligned} & \hline \operatorname{tPIH}(1) \\ & \mathrm{tPIL}(1) \end{aligned}$	INTO(P70), INT1(P71), INT2(P72), INT4(P30 to P33), INT5(P34 to P35), INT6(P30), INT7(P34)	- Interrupt source flag can be set. - Event inputs for timer 0 or 1 are enabled.	2.2 to 5.5	1			tCYC
	$\begin{aligned} & \hline \operatorname{tPIH}(2) \\ & \mathrm{tPIL}(2) \end{aligned}$	INT3(P73) when noise filter time constant is $1 / 1$	- Interrupt source flag can be set. - Event inputs for timer 0 are enabled.	2.2 to 5.5	2			
	$\begin{aligned} & \mathrm{tPIH}(3) \\ & \mathrm{tPIL}(3) \end{aligned}$	INT3(P73) when noise filter time constant is $1 / 32$	- Interrupt source flag can be set. - Event inputs for timer 0 are enabled.	2.2 to 5.5	64			
	tPIH(4) tPIL(4)	INT3(P73) when noise filter time constant is $1 / 128$	- Interrupt source flag can be set. - Event inputs for timer 0 are enabled.	2.2 to 5.5	256			
	$\begin{aligned} & \text { tPIH(5) } \\ & \text { tPIL(5) } \\ & \hline \end{aligned}$	MICIN(P87)	Condition that signal is accepted to small signal detection counter.	2.2 to 5.5	1			
	$\begin{aligned} & \hline \operatorname{tPIH}(6) \\ & \mathrm{tPIL}(6) \end{aligned}$	RMIN(P73)	Condition that signal is accepted to remote control receiver circuit.	2.2 to 5.5	4			RMCK (Note5-1)
	tPIL(7)	$\overline{\mathrm{RES}}$	Resetting is enabled.	2.2 to 5.5	200			$\mu \mathrm{S}$

Note 5-1: RMCK is an unit for the base clock (40tCYC/50tCYC/Sub-Clock) of remote control receiver circuit.

AD Converter Characteristics at VSS1 = VSS2 = VSS3 $=0 \mathrm{~V}$
<12 bits AD Converter Mode at $\mathrm{Ta}=-\mathrm{xx}$ to $+\mathrm{xx}{ }^{\circ} \mathrm{C}>$ To be determined after evaluation

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
Resolution	N	ANO(P80) to AN7(P87), AN8(P70), AN9(P71), AN10(XT1), AN11(XT2)				12		bit
Absolute accuracy	ET		(Note 6-1)					LSB
			(Note 6-1) $\mathrm{Ta}=-10$ to $+50^{\circ} \mathrm{C}$					
Conversion time	tCAD		- See Conversion time calculation formulas. (Note 6-2) $\mathrm{Ta}=-10 \text { to }+50^{\circ} \mathrm{C}$					$\mu \mathrm{s}$
			- See Conversion time calculation formulas. (Note 6-2)					
Analog input voltage range	VAIN				VSS		$V_{\text {DD }}$	V
Analog port input current	IAINH		VAIN $=\mathrm{V}_{\text {DD }}$				1	$\mu \mathrm{A}$
	IAINL		VAIN= $\mathrm{V}_{\text {SS }}$		-1			

<8bits AD Converter Mode at $\mathrm{Ta}=-30$ to $+70^{\circ} \mathrm{C}$ >

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
Resolution	N	ANO(P80) to AN7(P87), AN8(P70), AN9(P71), AN10(XT1), AN11(XT2)		3.0 to 5.5		8		bit
Absolute accuracy	ET		(Note 6-1)	3.0 to 5.5			1.5	LSB
Conversion time	TCAD		- See Conversion time calculation formulas. (Note 6-2)	4.0 to 5.5				$\mu \mathrm{s}$
				3.0 to 5.5				
Analog input voltage range	VAIN			3.0 to 5.5	$\mathrm{V}_{\text {SS }}$		$V_{\text {DD }}$	V
Analog port input current	IAINH		VAIN $=\mathrm{V}_{\text {DD }}$	3.0 to 5.5			1	$\mu \mathrm{A}$
	IAINL		VAIN $=\mathrm{V}_{\text {SS }}$	3.0 to 5.5	-1			

<Conversion time calculation formulas>

12 bits AD Converter Mode: TCAD(Conversion time $)=((52 /($ division ratio $))+2) \times(1 / 3) \times \mathrm{tCYC}$
8 bits AD Converter Mode: $\operatorname{TCAD}($ Conversion time $)=((32 /($ division ratio $))+2) \times(1 / 3) \times$ tCYC

<Recommended Operating Conditions>

External oscillation FmCF [MHz]	Operating supply voltage range$\mathrm{V}_{\mathrm{DD}}[\mathrm{~V}]$	System division ratio (SYSDIV)	Cycle time tCYC [ns]	AD division ratio	AD conversion time (tCAD) $[\mu \mathrm{s}]$	
				(ADDIV)	12bit AD	8bit AD
12	4.0 to 5.5	1/1	250	1/8	TBD	21.5
	3.0 to 5.5	1/1	250	1/16	TBD	42.8

Note 6-1: The quantization error ($\pm 1 / 2 \mathrm{LSB}$) must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.
Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.
The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 12 -bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12 -bit conversion mode.

Consumption Current Characteristics at $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VSS} 1=\mathrm{VSS} 2=\mathrm{VSS} 3=0 \mathrm{~V}$

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

Continued on next page.

LC87F7DC8A
Continued from preceding page.

Parameter	Symbol	Pin/ Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
HALT mode consumption current (Note 7-1)	IDDHALT(1)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}{ }^{1} \\ & =\mathrm{V}_{\mathrm{DD}^{2}} \\ & =\mathrm{V}_{\mathrm{DD}^{3}} \end{aligned}$	- HALT mode - FmCF $=12 \mathrm{MHz}$ ceramic oscillation mode - FmX'tal=32.768kHz crystal oscillation mode - System clock set to 12 MHz side - Internal RC oscillation stopped. - Frequency variable RC oscillation stopped. - $1 / 1$ frequency division ratio	4.5 to 5.5		3.2	8.5	mA
	IDDHALT(2)			3.0 to 3.6		1.9	4.4	
	IDDHALT(3)		- HALT mode - FmCF $=8 \mathrm{MHz}$ ceramic oscillation mode - FmX'tal=32.768kHz crystal oscillation mode - System clock set to 8 MHz side - Internal RC oscillation stopped. - Frequency variable RC oscillation stopped. - 1/1 frequency division ratio	4.5 to 5.5		2.3	6.2	
	IDDHALT(4)			3.0 to 3.6		1.4	3.1	
	IDDHALT(5)			2.5 to 3.0		1.0	2.5	
	IDDHALT(6)		- HALT mode - FmCF=4MHz ceramic oscillation mode - FmX'tal $=32.768 \mathrm{kHz}$ crystal oscillation mode - System clock set to 4 MHz side - Internal RC oscillation stopped. - Frequency variable RC oscillation stopped. - 1/2 frequency division ratio	4.5 to 5.5		1.4	3.9	
	IDDHALT(7)			3.0 to 3.6		0.8	1.8	
	IDDHALT(8)			2.2 to 3.0		0.6	1.3	
	IDDHALT(9)		- HALT mode - $\mathrm{FmCF}=0 \mathrm{~Hz}$ (oscillation stopped)	4.5 to 5.5		0.3	1.3	
	IDDHALT(10)		- FmX'tal=32.768kHz crystal oscillation mode	3.0 to 3.6		0.18	0.75	
	IDDHALT(11)		- Frequency variable RC oscillation stopped. - 1/2 frequency division ratio	2.2 to 3.0		0.14	0.54	
	IDDHALT(12)		- HALT mode - FmCF=0Hz (oscillation stopped) - FmX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		2.7	7.1	
	IDDHALT(13)		- Internal RC oscillation stopped. - System clock set to 10 MHz with frequency variable RC oscillation - $1 / 1$ frequency division ratio	3.0 to 3.6		1.7	4.6	
	IDDHALT(14)		- HALT mode - FmCF=0Hz (oscillation stopped) - FmX'tal=32.768kHz crystal oscillation mode - Internal RC oscillation stopped. - System clock set to 4 MHz with frequency variable RC oscillation - $1 / 1$ frequency division ratio	4.5 to 5.5		1.3	3.5	
				3.0 to 3.6		0.8	1.75	
	IDDHALT(16)			2.2 to 3.0		0.6	1.2	
	IDDHALT(17)		- HALT mode - FmCF=0Hz (oscillation stopped) - FmX'tal=32.768kHz crystal oscillation mode - System clock set to 32.768 kHz side - Internal RC oscillation stopped. - Frequency variable RC oscillation stopped. - 1/2 frequency division ratio	4.5 to 5.5		19.0	100.3	
	IDDHALT(18)			3.0 to 3.6		7.9	38.0	
	IDDHALT(19)			2.2 to 3.0		4.9	26.0	
HOLD mode consumption current	IDDHOLD(1)	$\mathrm{V}_{\mathrm{DD}}{ }^{1}$	- HOLD mode - CF1=V ${ }_{\text {DD }}$ or open (External clock mode)	4.5 to 5.5		0.14	32.5	$\mu \mathrm{A}$
	IDDHOLD(2)			3.0 to 3.6		0.03	12.0	
	IDDHOLD(3)			2.2 to 3.0		0.01	14.0	
Timer HOLD mode consumption current	IDDHOLD(4)		- Timer HOLD mode - CF1=V DD or open (External clock mode) - FmX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		15.5	58.0	
	IDDHOLD(5)			3.0 to 3.6		6.3	32.0	
	IDDHOLD(6)			2.2 to 3.0		3.6	20.0	

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

F-ROM Write Characteristics at $\mathrm{Ta}=+10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}, \mathrm{VSS} 1=\mathrm{VSS} 2=\mathrm{VSS} 3=0 \mathrm{~V}$

Parameter	Symbol	Pin/Rem arks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
Onboard programming current	IDDFW(1)	$\mathrm{V}_{\mathrm{DD}}{ }^{1}$	- 128-byte programming - Erasing current included	3.0 to 5.5		25	40	mA
Programming time	tFW(1)		- 128-byte programming - Erasing current included - Time for setting up 128 -byte data is excluded.	3.0 to 5.5		22.5	45	ms

UART (Full Duplex) Operating Conditions at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VSS} 1=\mathrm{VSS}^{2}=\mathrm{V}$ SS $3=0 \mathrm{~V}$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
Transfer ate	UBR	UTX(P32), URX(P33)		2.2 to 5.5	16/3		8192/3	tCYC

Data length: 7/8/9 bits (LSB first)
Stop bits: 1 bit (2-bit in continuous data transmission)
Parity bits: None
Example of 8-bit Data Transmission Mode Processing (Transmit Data=55H)

Example of 8-bit Data Reception Mode Processing (Receive Data=55H)

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

Nominal Frequency	Vendor Name	Oscillator Name	Circuit Constant				Operating Voltage Range [V]	Oscillation Stabilization Time		Remarks
			$\begin{gathered} \mathrm{C} 1 \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} \mathrm{C} 2 \\ {[\mathrm{pF}]} \end{gathered}$	Rf1 [Ω]	Rd1 [Ω]		$\begin{gathered} \text { typ } \\ \text { [ms] } \\ \hline \end{gathered}$	max [ms]	
12MHz	MURATA	CSTCE12M0G52-R0	(10)	(10)	Open					Values shown in parentheses are capacitance included in the oscillator
8MHz	MURATA	CSTCE8M00G52-R0	(10)	(10)	Open					Values shown in parentheses are
		CSTLS8M00G52-R0	(15)	(15)	Open					capacitance included in the oscillator
4MHz	MURATA	CSTCR4M00F53-R0	(15)	(15)	Open					Values shown in parentheses are
		CSTLS4M0053-B0	(15)	(15)	Open					capacitance included in the oscillator

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after VDD goes above the operating voltage lower limit (see Figure 4).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator

Nominal Frequency	Vendor Name	Oscillator Name	Circuit Constant				Operating Voltage Range [V]	Oscillation Stabilization Time		Remarks
			$\begin{gathered} \mathrm{C} 3 \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} \mathrm{C} 4 \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{aligned} & \text { Rf2 } \\ & {[\Omega]} \end{aligned}$	$\begin{array}{r} \mathrm{Rd} 2 \\ {[\Omega]} \\ \hline \end{array}$		typ [s]	$\begin{gathered} \max \\ {[\mathrm{s}]} \\ \hline \end{gathered}$	
32.768 kHz	$\begin{aligned} & \text { EPSON } \\ & \text { TOYOCOM } \end{aligned}$	MC-306								

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the oscillation to get stabilized after the HOLD mode is reset (see Figure 4).

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

Figure 1 CF Oscillator Circuit

Figure 2 XT Oscillator Circuit

Figure 3 AC Timing Measurement Point

Reset Time and Oscillation Stabilization Time

HOLD Reset Signal and Oscillation Stabilization Time
Figure 4 Oscillation Stabilization Times

Note:

Determine the value of CRES and RRES so that the reset signal is present for a period of 200μ s after the supply voltage goes beyond the lower limit of the IC's operating voltage.

Figure 5 Reset Circuit

Figure 6 Serial I/O Waveforms

Figure 7 Pulse Input Timing Signal Waveform

Figure 8 LCD Bias Resistor

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for 8 -bit Microcontrollers - MCU category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :

```
CY8C20524-12PVXIT MB95F012KPFT-G-SNE2 MB95F013KPMC-G-SNE2 MB95F263KPF-G-SNE2 MB95F264KPFT-G-SNE2
MB95F398KPMC-G-SNE2 MB95F478KPMC2-G-SNE2 MB95F564KPF-G-SNE2 MB95F636KWQN-G-SNE1 MB95F696KPMC-G-SNE2
MB95F698KPMC2-G-SNE2 MB95F698KPMC-G-SNE2 MB95F818KPMC1-G-SNE2 901015X CY8C3MFIDOCK-125 403708R
MB95F354EPF-G-SNE2 MB95F564KWQN-G-SNE1 MB95F636KP-G-SH-SNE2 MB95F694KPMC-G-SNE2 MB95F778JPMC1-G-SNE2
MB95F818KPMC-G-SNE2 LC87F0G08AUJA-AH CP8361BT CG8421AF MB95F202KPF-G-SNE2 DF36014FPV 5962-8768407MUA
MB95F318EPMC-G-SNE2 MB94F601APMC1-GSE1 MB95F656EPF-G-SNE2 LC78615E-01US-H LC87F5WC8AVU-QIP-H
MB95F108AJSPMC-G-JNE1 73S1210F-68M/F/PJ MB89F538-101PMC-GE1 LC87F7DC8AVU-QIP-H MB95F876KPMC-G-SNE2
MB88386PMC-GS-BNDE1 LC87FBK08AU-SSOP-H LC87F2C64AU-QFP-H MB95F636KNWQN-G-118-SNE1 MB95F136NBSTPFV-GS-
N2E1 LC87F5NC8AVU-QIP-E CY8C20324-12LQXIT LC87F76C8AU-TQFP-E CG8581AA LC87F2G08AU-SSOP-E CP8085AT
ATTINY3224-SSU
```


[^0]: * This product is licensed from Silicon Storage Technology, Inc. (USA).

