CMOS IC FROM 98K byte, RAM 4096 byte on-chip 8-bit 1-chip Microcontroller

Overview

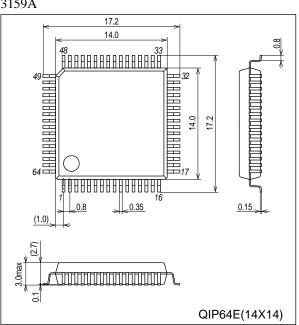
The LC87FC096A is an 8-bit microcomputer, integrates a number of hardware features such as 98K-byte flash ROM, 4096-byte RAM, On-chip debugging function, 16-bit timers/counter, four 8-bit timers, a 16-bit timer, a base timer serving as a time-of-day clock, a high-speed clock counter, a synchronous SIO interface (with automatic block transmission/reception capabilities), an asynchronous/synchronous SIO port, two UART ports, a single master I²C/synchronous SIO interface, an 11-channel AD converter, four PWM channels, a system clock frequency divider, a infrared remote controller receiver function, and interrupt feature.

Features

■Flash ROM

- 100352 × 8 bits
- (Address: 00000H to 17FFFH, 1F800H to 1FFFFH)Capable of on-board-programing with 2.7 to 3.6V, of voltage source.
- Block-erasable in 2K byte units

■RAM


• 4096 × 9 bits (LC87FC096A)

■Package Form

- QIP64E (14×14):
- Lead-free and halogen-free type

Package Dimensions

unit : mm (typ) 3159A

* This product is licensed from Silicon Storage Technology, Inc. (USA).

■Minimum Bus Cycle

- 83.3ns (12MHz) V_{DD}=2.7 to 3.6V
- 125ns (8MHz) V_{DD}=2.5 to 3.6V
- Note: The bus cycle time here refers to the ROM read speed.
- ■Minimum Instruction Cycle Time
 - 250ns (12MHz) VDD=2.7V to 3.6V
 - 375ns (8MHz) V_{DD}=2.5V to 3.6V

■Ports

• Normal withstand voltage I/O ports Ports whose I/O direction can be designated in 1-bit units 46 (P1n, P2n, P3n, P70 to P73, P80 to P86, PCn,

46 (P1n, P2n, P3n, P70 to P73, P80 to P86, PCn, PWM2, PWM3, XT2) 8 (P0n)

- Ports whose I/O direction can be designated in 4-bit units
- Normal withstand voltage input port
- Dedicated oscillator ports
- Reset pins
- Power pins

1 (XT1) 2 (<u>CF1</u>, CF2) 1 (<u>RES</u>) 6(VSS1 to 3, V_{DD}1 to 3)

- ■Timers
 - Timer 0:16-bit timer/counter with a capture register
 - Mode 0:8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) × 2 channels
 Mode 1:8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)
 - + 8-bit counter (with an 8-bit capture register)
 - Mode 2:16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)
 - Mode 3:16-bit counter (with a 16-bit capture register)
 - Timer 1:16-bit timer/counter that supports PWM/toggle outputs

Mode 0:8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer/

- counter with an 8-bit prescaler (with toggle outputs)
- Mode 1:8-bit PWM with an 8-bit prescaler \times 2 channels
- Mode 2:16-bit timer/counter with an 8-bit prescaler (with toggle outputs)
 - (toggle outputs also possible from the lower-order 8 bits)
- Mode 3:16-bit timer with an 8-bit prescaler (with toggle outputs)

(The lower-order 8 bits can be used as PWM)

- Timer 4:8-bit timer with a 6-bit prescaler
- Timer 5:8-bit timer with a 6-bit prescaler
- Timer 6:8-bit timer with a 6-bit prescaler (with toggle outputs)
- Timer 7:8-bit timer with a 6-bit prescaler (with toggle outputs)
- Timer A:16-bit timer
 - Mode 0:8-bit timer with an 8-bit programmable prescaler \times 2-channels
 - Mode 1:16-bit timer with an 8-bit programmable prescaler
- Base timer
 - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - 2) Interrupts programmable in 5 different time schemes
- ■High-Speed Clock Counter
 - Can count clocks with a maximum clock rate of 24MHz (at a main clock of 12MHz)
 - Can generate output real-time

■SIO

- SIO0:8-bit Synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle=4/3tCYC)
 - 3) Automatic continuous data transmission (1 to 256 bits, specifiable in 1 bit units, suspension and resumption of data transmission possible in 1 byte units)
- SIO1:8-bit asynchronous/synchronous serial interface
- Mode 0:Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks) Mode 1:Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates) Mode 2:Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)
- Mode 3:Bus mode 2 (start detect, 8 data bits, stop detect)
- SMIIC0:Single master I²C/8-bit synchronous SIO Mode 0:Single-master mode communication Mode 1:Synchronous 8-bit serial I/O (MSB first)
- ■UART: 2 channels
 - Full duplex
 - 7/8/9 bit data bits selectable
 - 1 stop bit (2-bit in continuous data transmission)
 - Built-in baudrate generator (with baudrates of 16/3 to 8192/3 tCYC)
- ■AD Converter: 12 bits × 11 channels
- ■PWM: Multifrequency 12-bit PWM × 4-channels
- Remote Control Receiver Circuit (sharing pins with P73, INT3, and T0IN)
 - Noise filtering function (noise filter time constant selectable from 1 tCYC, 32 tCYC, and 128 tCYC)
 - The noise filtering function is available for the INT3, T0IN, or T0HCP signal at P73. When P73 is read with an instruction, the signal level at that pin is read regardless of the availability of the noise filtering function.

■Infrared Remote Controller Receiver Circuit

- Noise rejection function (noise filter time constant: Approx. 120µs when the 32.768kHz crystal oscillator is selected as the reference clock source)
- Supports data encording systems such as PPM (Pulse Position Modulation) and Manchester encording
- X'tal HOLD mode release function
- ■Watchdog Timer
 - External RC watchdog timer
 - Interrupt and reset signals selectable
- Clock Output Function
 - Able to output selected oscillation clock 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 as system clock.
 - Able to output oscillation clock of sub clock.

■Interrupts

- 31 sources, 10 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
- 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

aaaress	anes precedence.		
No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4/TAL/Infrared remote control receiver
4	0001BH	H or L	INT3/INT5/base timer0/base timer1
5	00023H	H or L	T0H/INT6/TAH
6	0002BH	H or L	T1L/T1H/INT7/SMIIC0
7	00033H	H or L	SIO0/UART1 receive/ UART2 receive
8	0003BH	H or L	SIO1/UART1 transmit/ UART2 transmit
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0/T4/T5/PWM2, PWM3/RMPWM

• Priority levels X > H > L

• Of interrupts of the same level, the one with the smallest vector address takes precedence.

■Subroutine Stack Levels: 2048 levels (the stack is allocated in RAM)

■High-speed Multiplication/Division Instructions

- 16 bits \times 8 bits (5 tCYC execution time)
- 24 bits \times 16 bits (12 tCYC execution time)
- 16 bits ÷ 8 bits (8 tCYC execution time)
- 24 bits ÷ 16 bits (12 tCYC execution time)

■Oscillation Circuits

- RC oscillation circuit (internal): For system clock
- CF oscillation circuit:
- For system clock, with internal Rf
- Crystal oscillation circuit: For low-speed system clock

System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from 250ns, 500ns, 1.0µs, 2.0µs, 4.0µs, 8.0µs, 16.0µs, 32.0µs, and 64.0µs (at a main clock rate of 12MHz).

Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) Canceled by a system reset or occurrence of an interrupt.
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC, and crystal oscillators automatically stop operation.
 - 2) There are three ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the low level
 - (2) Setting at least one of the INTO, INT1, INT2, INT4, and INT5 pins to the specified level
 - (3) Having an interrupt source established at port 0

Continued on next page.

Continued from preceding page.

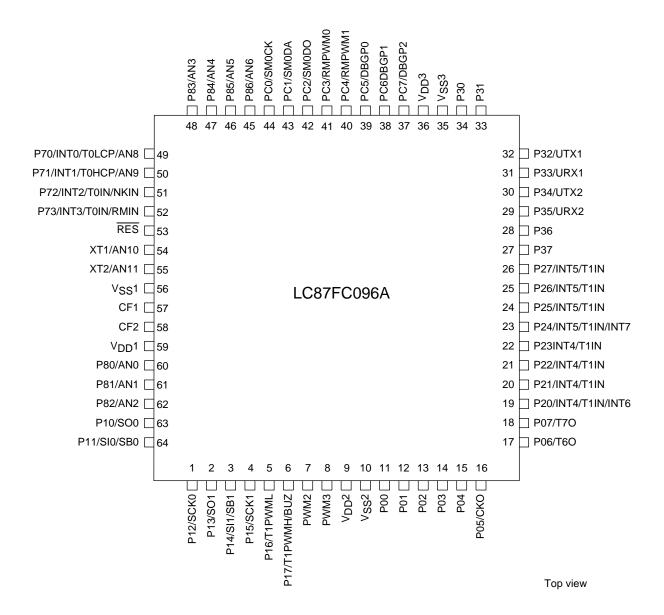
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer and infrared remote controller receiver circuit.
 - 1) The CF and RC oscillators automatically stop operation.
 - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are four ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level
 - (2) Setting at least one of the INTO, INT1, INT2, INT4, and INT5 pins to the specified level
 - (3) Having an interrupt source established at port 0
 - (4) Having an interrupt source established in the base timer circuit
 - (5) Having an interrupt source established in the infrared remote controller receiver circuit

■On-chip Debugger Function

• Permits software debugging with the test device installed on the target board.

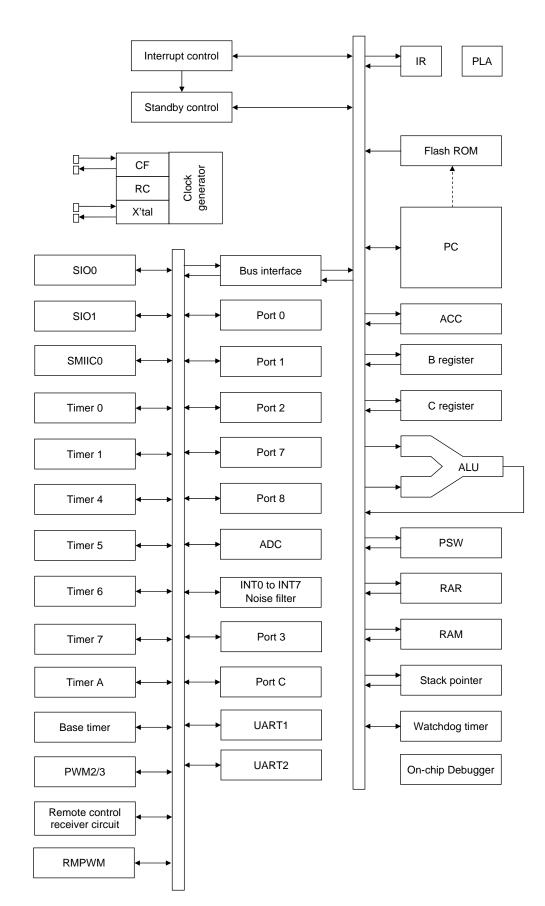
■Development Tools

• On-chip debugger: TCB87-TypeC (3wire version) + LC87FC096A


■Programming Boards

Package	Programming boards
QIP64E	W87F50256Q

■Flash ROM Programmer


Maker	Model	Supported version	Device
Our company	SKK/SKK Type-B/SKK DBG Type-B	Application Version: After 1.08	LC87FC096
	(SANYO FWS)	Chip Data Version: After 2.42	

Pin Assignment

QIP64E (14×14) "Lead-free and halogen-free type"

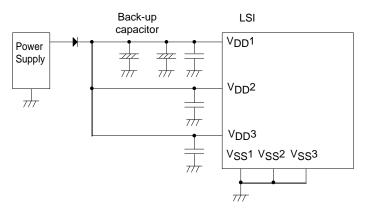
System Block Diagram

Pin Description

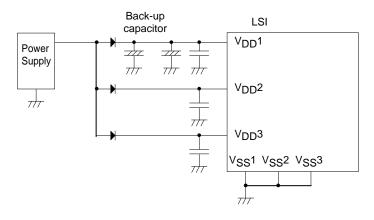
Pin Name	I/O			Desci	iption			Option		
V _{SS} 1, V _{SS} 2, V _{SS} 3	-	- Power supply p	in					No		
V _{DD} 1, V _{DD} 2, V _{DD} 3	-	+ Power supply	pin					No		
Port 0	I/O	8-bit I/O port						Yes		
P00 to P07		• I/O specifiable	in 4-bit units							
		 Pull-up resistor 	can be turned	on and off in 4-b	it units					
		HOLD release	input							
		Port 0 interrupt	input							
		 Shared Pins 								
		P05 : Clock out	put (system clo	ck / can selected	I from sub clock	.)				
		P06 : Timer 6 te	Timer 6 toggle output							
		P07 : Timer 7 to	oggle output							
Port 1	I/O	 8-bit I/O port 						Yes		
P10 to P17		 I/O specifiable 	in 1-bit units							
		 Pull-up resistor 	can be turned of	on and off in 1-b	it units					
		 Pin functions 								
		P10 : SIO0 data	a output							
		P11 : SIO0 data	a input/bus I/O							
		P12 : SIO0 cloo	k I/O							
		P13 : SIO1 data	-							
		P14 : SIO1 data	•							
		P15 : SIO1 cloo								
		P16 : Timer 1 F	•							
			WMH output/be	eper output				-		
Port 2	I/O	8-bit I/O port						Yes		
P20 to P27		I/O specifiable								
		Pull-up resistor		on and off in 1-b	it units					
		Other functions								
		•		put/timer 1 even	•	• •				
			• •	T6 input/timer 0	•					
			-	-	i event input/tir	mer 0L capture i	nput/			
			er 0H capture in	nput put/timer 1 even	t input/timor Ol	antura input/				
		•			•	• •				
				T7 input/timer 01		mer 0L capture i	nout/			
			ier 0H capture in	-			npul			
		Interrupt ackno	-	iput						
			wiedge type		Rising/					
			Rising	Falling	Falling	H level	L level			
		INT4	enable	enable	enable	disable	disable			
		INT5	enable	enable	enable	disable	disable			
		INT6	enable	enable	enable	disable	disable			
INT7 enable enable enable disable disable										

Continued on next page.

Continued from prec		Description	Ontion
Pin Name	I/O	Description	Option
Port 7 P70 to P73	I/O	 4-bit I/O port I/O specifiable in 1-bit units Pull-up resistor can be turned on and off in 1-bit units Shared pins P70 : INT0 input/HOLD reset input/timer 0L capture input/watchdog timer output P71 : INT1 input/HOLD reset input/timer 0H capture input P72 : INT2 input/HOLD reset input/timer 0 event input/timer 0L capture input/ high speed clock counter input 	No
		 P73 : INT3 input (with noise filter)/timer 0 event input/timer 0H capture input/ remote control receiver input AD converter input port: AN8 (P70), AN9 (P71) 	
		Interrupt acknowledge type Rising Rising Falling Falling H level L level	
		INT0enableenabledisableenableenableINT1enableenabledisableenableenableINT2enableenableenabledisabledisableINT3enableenableenabledisabledisable	
Port 8 P80 to P86	I/O	7-bit I/O port I/O specifiable in 1-bit units Shared pins AD converted part (ANO (BOO) to ANG (BOC)	No
PWM2 PWM3	I/O	AD converter input port : AN0 (P80) to AN6 (P86) PWM2 and PWM3 output ports General-purpose I/O available	No
Port 3	I/O	8-bit I/O port	Yes
		 Pull-up resistor can be turned on and off in 1-bit units Pin functions P32: UART1 transmit P33: UART1 receive P34: UART2 transmit P35: UART2 receive 	
Port C	I/O	8-bit I/O port	Yes
PC0 to PC7		 I/O specifiable in 1-bit units Pull-up resistor can be turned on and off in 1-bit units Pin functions PC0: SMIIC0 clock input/output PC1: SMIIC0 bus input/output/data input PC2: SMIIC0 data output (used in 3-wire SIO mode) PC3: RMPWM0 output PC4: RMPWM1 output PC5: DBGP0 PC6: DBGP1 PC7: DBGP2 DBGP0 to DBGP2: On-chip Debugger 	
RES	Input	Reset pin	No
XT1	Input	 32.768kHz crystal oscillator input pin Shared pins General-purpose input port AD converter input port : AN10 Must be connected to VDD1 if not to be used. 	No
XT2	I/O	 32.768kHz crystal oscillator output pin Shared pins General-purpose I/O port AD converter input port : AN11 Must be set for oscillation and kept open if not to be used. 	No
CF1	Input	Ceramic resonator input pin	No
CF2	Output	Ceramic resonator output pin	No


Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor. Data can be read into any input port even if it is in the output mode.


Port Name	Option Selected in Units of	Option Type	Output Type	Pull-up Resistor
P00 to P07	1 bit	1 bit 1 CMOS		Programmable (Note 1)
		2	Nch-open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P20 to P27	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
P80 to P86	-	No	Nch-open drain	No
PWM2, PWM3	-	No	CMOS	No
P30 to P37	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
PC0 to PC7	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
XT1	-	No	Input for 32.768kHz crystal oscillator (Input only)	No
XT2	-	No	Output for 32.768kHz crystal oscillator (Nch-open drain when in general-purpose output mode)	No

Note 1:Programmable pull-up resistors for port 0 are controlled in 4-bit units (P00 to 03, P04 to 07).

- *1: Make the following connection to minimize the noise input to the V_{DD}1 pin and prolong the backup time. Be sure to electrically short the V_{SS}1, V_{SS}2 and V_{SS}3 pins.
 - (Example 1) When backup is active in the HOLD mode, the high level of the port outputs is supplied by the backup capacitors.

(Example 2) The high-level output at the ports is unstable when the HOLD mode backup is in effect.

	Parameter	Symbol	Pin/Remarks	Conditions			Spe	cification	
					V _{DD} [V]	min	typ	max	unit
	ximum supply tage	V _{DD} max	V _{DD} 1, V _{DD} 2, V _{DD} 3	V _{DD} 1=V _{DD} 2=V _{DD} 3		-0.3		+4.6	
Inp	ut voltage	VI(1)	XT1, CF1			-0.3		V _{DD} +0.3	
Inp	ut/output voltage	VIO(1)	Ports 0, 1, 2 Ports 7, 8 Ports 3, C PWM2, PWM3, XT2			-0.3		V _{DD} +0.3	V
	Peak output current	IOPH(1)	Ports 0, 1, 2 Ports 3, C	CMOS output select Per 1 applicable pin		-7.5			
		IOPH(2)	PWM2, PWM3	Per 1 applicable pin		-12.5			
		IOPH(3)	P71 to P73	Per 1 applicable pin		-4.5			
ц	Mean output current	IOMH(1)	Ports 0, 1, 2 Ports 3, C	CMOS output select Per 1 applicable pin		-5			
rren	(Note 1-1)	IOMH(2)	PWM2, PWM3	Per 1 applicable pin		-10			
ut cu	(IOMH(3)	P71 to P73	Per 1 applicable pin		-3			
utpr	Total output	ΣIOAH(1)	P71 to P73	Total of all applicable pins	1	-10	1		
High level output current	current	ΣIOAH(2)	Port 1 PWM2, PWM3	Total of all applicable pins		-15			
High		ΣIOAH(3)	Ports 0, 2	Total of all applicable pins		-15			
		ΣIOAH(4)	Ports 0, 1, 2 PWM2, PWM3	Total of all applicable pins		-30			
		ΣIOAH(5)	Port 3	Total of all applicable pins		-15			
		ΣIOAH(6)	Port C	Total of all applicable pins		-15			
		ΣIOAH(7)	Ports 3, C	Total of all applicable pins		-30			
	Peak output current	IOPL(1)	P02 to P07 Ports 1, 2 Ports 3, C	Per 1 applicable pin				10	
		IOPL(2)	PWM2, PWM3 P00, P01	Per 1 applicable pin				15	mA
		IOPL(3)	Ports 7, 8, XT2	Per 1 applicable pin				7.5	
ent	Mean output current (Note 1-1)	IOML(1)	P02 to P07 Ports 1, 2 Ports 3, C PWM2, PWM3	Per 1 applicable pin				7.5	
curr		IOML(2)	P00, P01	Per 1 applicable pin				10	
tput		IOML(3)	Ports 7, 8, XT2	Per 1 applicable pin				5	
Low level output current	Total output current	ΣIOAL(1)	Port 7 P83 to P86, XT2	Total of all applicable pins				15	
٥		$\Sigma IOAL(2)$	P80 to P82	Total of all applicable pins				10	
		ΣIOAL(3)	Ports 7, 8, XT2	Total of all applicable pins				25	
		ΣIOAL(4)	Port 1 PWM2, PWM3	Total of all applicable pins				25	
		ΣIOAL(5)	Ports 0, 2	Total of all applicable pins				25	
		ΣIOAL(6)	Ports 0, 1, 2 PWM2, PWM3	Total of all applicable pins				50	
		ΣIOAL(7)	Port 3	Total of all applicable pins				25	
		ΣIOAL(8)	Port C	Total of all applicable pins				25	
		ΣIOAL(9)	Ports 3, C	Total of all applicable pins				50	
	ximum power sipation	Pdmax	QIP64E(14×14)	Ta=-40 to +85°C				300	mW
	erating ambient	Topr				-40		85	
	prage ambient	Tstg				-55		125	°C

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Note 1-1: The mean output current is a mean value measured over 100ms.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$	$C, V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$
---	---------------------------------------

Parameter	Symbol	Pin/Remarks	Conditions			Specific	ation		
T didificiei	Cymbol	T III/TCOMarK5	Conditions	VDD[V]	min	typ	max	uni	
Operating	V _{DD} (1)	V _{DD} 1=V _{DD} 2=V _{DD} 3	$0.245 \mu s \le tCYC \le 200 \mu s$		2.7		3.6		
supply voltage (Note 2-1)			0.367µs ≤ tCYC ≤ 200µs		2.5		3.6		
Memory sustaining supply voltage	VHD	V _{DD} 1=V _{DD} 2=V _{DD} 3	RAM and register contents sustained in HOLD mode.		2.0		3.6		
High level input voltage	∨I <u>H</u> (1)	Ports 1, 2 P71 to P73 P70 port input /interrupt side		2.5 to 3.6	0.3V _{DD} +0.7		V _{DD}		
	V _{IH} (2)	Ports 0, 8, 3, C PWM2, PWM3		2.5 to 3.6	0.3V _{DD} +0.7		V _{DD}		
	V _{IH} (3)	Port 70 watchdog timer side		2.5 to 3.6	0.9V _{DD}		V _{DD}	V	
Low level input voltage	V _{IH} (4)	XT1, XT2, CF1, RES		2.5 to 3.6	0.75V _{DD}		V _{DD}		
	∨ _{IL} (1)	Ports 1, 2 P71 to P73 P70 port input/ interrupt side		2.5 to 3.6	V _{SS}		0.25V _{DD}		
	V _{IL} (2)	Ports 0, 8, 3, C PWM2, PWM3		2.5 to 3.6	V _{SS}		0.2V _{DD}		
	V _{IL} (3)	Port 70 watchdog timer side		2.5 to 3.6	V _{SS}		0.8V _{DD} -1.0		
	V _{IL} (4)	XT1, XT2, CF1, RES		2.5 to 3.6	V _{SS}		0.25V _{DD}		
Instruction cycle time	tCYC			2.7 to 3.6	0.245		200	μs	
(Note 2-2)				2.5 to 3.6	0.367		200		
External system clock frequency	FEXCF(1)	CF1	CF2 pin openSystem clock frequency	2.7 to 3.6	0.1		12		
			division rate=1/1 • External system clock duty=50±5%	2.5 to 3.6	0.1		8	MHz	
			CF2 pin openSystem clock frequency	2.7 to 3.6	0.2		24		
			division rate=1/2	2.5 to 3.6	0.2		16		
Oscillation frequency range	FmCF(1)	CF1, CF2	12MHz ceramic oscillation See Fig. 1.	2.7 to 3.6		12			
(Note 2-3)	FmCF(2)	CF1, CF2	8MHz ceramic oscillation See Fig. 1.	2.5 to 3.6		8		MHz	
	FmRC		Internal RC oscillation	2.5 to 3.6	0.3	1.0	2.0		
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See Fig. 2.	2.5 to 2.6		32.768		kHz	
			- 3			1			

Note 2-1: V_{DD} must be held greater than or equal to 2.7V in the flash ROM onboard programming mode.

Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Note 2-3: See Tables 1 and 2 for the oscillation constants.

Parameter	Symbol	Pins	Conditions			Specificat	ion		
Parameter	Symbol	PINS	Conditions	V _{DD} [V]	min	typ	max	unit	
High level input current	I _{IH} (1)	Ports 0, 1, 2 Ports 7, 8 Ports 3, C RES PWM2, PWM3	Output disabled Pull-up resistor off VIN=VDD (Including output Tr's off leakage current)	2.5 to 3.6			1		
	I _{IH} (2)	XT1, XT2	For input port specification VIN=VDD	2.5 to 3.6			1		
	I _{IH} (3)	CF1	V _{IN} =V _{DD}	2.5 to 3.6			15		
Low level input current	I _{IL} (1)	Ports 0, 1, 2 Ports 7, 8 Ports 3, C RES PWM2, PWM3	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	2.5 to 3.6	-1			μA	
	I _{IL} (2)	XT1, XT2	For input port specification VIN=VSS	2.5 to 3.6	-1				
	I _{IL} (3)	CF1	VIN=VSS	2.5 to 3.6	-15				
High level output	V _{OH} (1)	Ports 0, 1, 2	I _{OH} =-0.4mA	3.0 to 3.6	V _{DD} -0.4				
voltage	V _{OH} (2)	Ports 3, C	I _{OH} =-0.2mA	2.5 to 3.6	V _{DD} -0.4				
	V _{OH} (3)	P71 to P73	I _{OH} =-0.4mA	3.0 to 3.6	V _{DD} -0.4				
	V _{OH} (4)		I _{OH} =-0.2mA	2.5 to 3.6	V _{DD} -0.4				
	V _{OH} (5)	PWM2, PWM3	I _{OH} =-1.6mA	3.0 to 3.6	V _{DD} -0.4				
	V _{OH} (6)		I _{OH} =-1mA	2.5 to 3.6	V _{DD} -0.4				
Low level output	V _{OL} (1)	Ports 0, 1, 2	I _{OL} =1.6mA	3.0 to 3.6			0.4	V	
voltage	V _{OL} (2)	Ports 3, C PWM2, PWM3	I _{OL} =1mA	2.5 to 3.6			0.4		
	V _{OL} (3)	Ports 7, 8	I _{OL} =1.6mA	3.0 to 3.6			0.4		
	V _{OL} (4)	XT2	I _{OL} =1mA	2.5 to 3.6			0.4		
	V _{OL} (5)	P00, P01	I _{OL} =5mA	3.0 to 5.5			0.4		
	V _{OL} (6)		I _{OL} =2.5mA	2.2 to 5.5			0.4		
Pull-up	Rpu(1)	Ports 0, 1, 2, 7	V _{OH} =0.9V _{DD}	3.0 to 3.6	15	35	80		
resistance	Rpu(2)	Ports 3, C		2.5 to 3.6	15	35	100	kΩ	
Hysteresis voltage	VHYS	RES Ports 1, 2, 7		2.5 to 3.6		0.1 V _{DD}		v	
Pin capacitance	СР	All pins	For pins other than that under test: VIN=VSS f=1MHz Ta=25°C	2.5 to 3.6		10		pF	

Electrical Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Serial I/O Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

1. SIO0 Serial I/O Characteristics (Note 4-1-1)

			Querra ha a l	Pin/	Oraditions			Spec	cification		
	F	Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
		Frequency	tSCK(1)	SCK0(P12)	See Fig. 6.		2				
	×	Low level pulse width	tSCKL(1)				1				
	Input clock	High level pulse width	tSCKH(1)			2.5 to 3.6	1			+0.20	
Serial clock	Ч		tSCKHA(1)		 Continuous data transmission/reception mode See Fig. 6. (Note 4-1-2) 		4			tCYC	
Serial		Frequency	tSCK(2)	SCK0(P12)	CMOS output selected See Fig. 6.		4/3				
	ock	Low level pulse width	tSCKL(2)					1/2		tSCK	
	Output clock	High level	tSCKH(2)			2.5 to 3.6		1/2			
	Õ		tSCKHA(2)		 Continuous data transmission/reception mode CMOS output selected See Fig. 6. 		tSCKH(2) +2tCYC		tSCKH(2) +(10/3) tCYC	tCYC	
Serial input	Da	ta setup time	tsDI(1)	SB0(P11), SI0(P11)	 Must be specified with respect to rising edge of SIOCLK. See Fig. 6. 	2.5 to 3.6	0.03				
Serial	Da	ta hold time	thDI(1)			2.5 to 3.6	0.03				
	clock	Output delay time	tdD0(1)	SO0(P10), SB0(P11)	Continuous data transmission/reception mode (Note 4-1-3)	2.5 to 3.6			(1/3)tCYC +0.05	μs	
Serial output	Input clock		tdD0(2)	-	Synchronous 8-bit mode (Note 4-1-3)	2.5 to 3.6			1tCYC +0.05		
Seria	Output clock		tdD0(3)		(Note 4-1-3)	2.5 to 3.6			(1/3)tCYC +0.15		

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: To use serial-clock-input in continuous trans / rec mode, a time from SIORUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.

2. SIO1 Serial I/O Characteristics (Note 4-2-1)

		D	Ourseland	Dia (Decarealus	Qualitiens			Spec	ification	
	I	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	×	Frequency	tSCK(3)	SCK1(P15)	See Fig. 6.		2			
	Input clock	Low level pulse width	tSCKL(3)			2.5 to 3.6	1			
clock	ln	High level	tSCKH(3)				1			tCYC
Serial clock	Output clock	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected See Fig. 6.		2			
		Low level pulse width	tSCKL(4)			2.5 to 3.6		1/2		10.01/
	no	High level pulse width	tSCKH(4)					1/2		tSCK
Serial input	Da	ata setup time	tsDI(2)	SB1(P14), SI1(P14)	 Must be specified with respect to rising edge of SIOCLK. See Fig. 6. 	2.5 to 3.6	0.03			
Serial	Da	ata hold time	thDI(2)			2.5 to 3.6	0.03			
Serial output	Οι	utput delay time	tdD0(4)	SO1(P13), SB1(P14)	 Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6. 	2.5 to 3.6			(1/3)tCYC +0.05	μs

 • See Fig. 6.

 Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

3-1. SMIIC0 Simple SIO Mode Input/Output Characteristics

	D		Ourseland	Applicable	Conditions			Spec	ification	
	Pa	arameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	×	Period	tSCK (4)	SM0CK (PC0)	See Fig. 6.		4/3			
	Input clock	Low level pulse width	tSCKL (4)			2.5 to 3.6	2/3			
clock	lnp	High level pulse width	tSCKH (4)				2/3			tCYC
Serial clock	쏭	Period	tSCK (5)	SM0CK (PC0)	CMOS output selected See Fig. 6.		4/3			
	S Output clock	Low level pulse width	tSCKL (5)			2.5 to 3.6		1/2		10.014
	no	High level pulse width	tSCKH (5)					1/2		tSCK
input	Da	ta setup time	tsDI (3)	SM0DA (PC1)	 Specified with respect to rising edge of SIOCLK 	0.51.00	0.03			
Serial input	Da	ta hold time	thDI (3)		• See Fig. 6.	2.5 to 3.6	0.03			
Serial output	Ou tim	itput delay ie	tdD0 (5)	SM0DO (PC2), SM0DA (PC1)	 Specified with respect to falling edge of SIOCLK Specified as interval up to time when output state starts changing. See Fig. 6. 	2.5 to 3.6			1/3tCYC +0.05	μs

Note 4-3-1: These specifications are theoretical values. Add margin depending on its use.

3-2. SMIIC0 I2C Mode Input/Output Characteristics

	D	arameter		Symbol	Applicable	Conditions			Spec	ification	1
		arameter		Зупьо	Pin/Remarks	Conditions	V _{DD} [V]	Min	typ	max	Unit
	×	Period		tSCL	SM0CK (PC0)	• See Fig. 8.		5			
	Input clock	Low level pulse wid		tSCLL			2.5 to 3.6	2.5			T 414
ck	Ē	High leve pulse wid		tSCLH				2			Tfilt
Clock	×	Period		tSCLx	SM0CK (PC0)	Specified as interval up to time when output state		10			
	Output clock	Low level pulse wid		tSCLLx		starts changing.	2.5 to 3.6		1/2		
	Out	High leve		tSCLHx					1/2		tSCL
pin	ns inp	K and SM0E out spike ssion time	A	tsp	SM0CK (PC0) SM0DA (PC1)	• See Fig. 8.	2.5 to 3.6			1	Tfilt
be		ease time en start op	Input	tBUF	SM0CK (PC0) SM0DA (PC1)	• See Fig. 8.		2.5			Tfilt
			Output	tBUFx	SM0CK (PC0) SM0DA (PC1)	 Standard clock mode Specified as interval up to time when output state starts changing. 	2.5 to 3.6	5.5			μs
			Õ	High-speed clock mode Specified as interval up to time when output state starts changing.			1.6			μο	
	nditic	estart on hold	Input	tHD;STA	SM0CK (PC0) SM0DA (PC1)	When SMIIC register control bit, SHDS=0 See Fig. 8.		2.0			Tfilt
			ln			When SMIIC register control bit, SHDS=1 See Fig. 8.		2.5			
			Output	tHD;STAx	SM0CK (PC0) SM0DA (PC1)	 Standard clock mode Specified as interval up to time when output state starts changing. 	2.5 to 3.6	4.1			
			Ou			 High-speed clock mode Specified as interval up to time when output state starts changing. 		1.0			μs
		t on setup	Input	tSU;STA	SM0CK (PC0) SM0DA (PC1)	• See Fig. 8.		1.0			Tfilt
	-		Output	tSU;STAx	SM0CK (PC0) SM0DA (PC1)	 Standard clock mode Specified as interval up to time when output state starts changing. 	2.5 to 3.6	5.5			
			μO			 High-speed clock mode Specified as interval up to time when output state starts changing. 		1.6			μs

Continued on next page.

Parameter			Applicable				Specific	ation	
	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	Min	typ	max	Unit	
Stop condition setup time	Input	tSU;STO	SM0CK (PC0) SM0DA (PC1)	• See Fig. 8.		1.0			Tfilt
	Output	tSU;STOx	SM0CK (PC0) SM0DA (PC1)	Standard clock mode Specified as interval up to time when output state starts changing.	2.5 to 3.6	4.9			
	Out			 High-speed clock mode Specified as interval up to time when output state starts changing. 		1.6			μs
Data hold time	Input	tHD;DAT	SM0CK (PC0) SM0DA (PC1)	• See Fig. 8.		0			
	Output	tHD;DATx	SM0CK (PC0) SM0DA (PC1)	Specified as interval up to time when output state starts changing.	2.5 to 3.6	1		1.5	Tfilt
Data setup time	Input	tSU;DAT	SM0CK (PC0) SM0DA (PC1)	• See Fig. 8.		1			
	Output	tSU;DATx	SM0CK (PC0) SM0DA (PC1)	Specified as interval up to time when output state starts changing.	- 2.5 to 3.6	1tSCL- 1.5Tfilt			Tfilt

Note 4-3-2: These specifications are theoretical values. Add margin depending on its use.

Note 4-3-3: The value of Tfilt is determined by the values of the register SMIC0BRG, bits 7 and 6 (BRP1, BRP0) and the system clock frequency.

BRP1	BRP0	Tfilt
0	0	(1/3)tCYC×1
0	1	(1/3)tCYC×2
1	0	(1/3)tCYC×3
1	1	(1/3)tCYC×4

Set bits (BPR1, BPR0) so that the value of Tfilt falls between the following range:

250ns Tfilt > 140ns

Note 4-3-4: The standard clock mode refers to a mode that is entered by configuring SMIC0BRG as follows:

 $250ns \geq Tfilt > 140ns$

BRDQ (bit5) = 1

SCL frequency setting ≤ 100 kHz

The high-speed clock mode refers to a mode that is entered by configuring SMIC0BRG as follows:

 $250ns \ge Tfilt > 140ns$

BRDQ (bit5) = 0

SCL frequency setting ≤ 400 kHz

Deservator	Querrahaal	Dias /Damarka	Operativitana			Specit	fication	
Parameter	Symbol	Pins/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level pulse width	tPIH(1) tPIL(1)	INT0(P70), INT1(P71), INT2(P72), INT4(P20 to P23), INT5(P24 to P27) INT6(P20), INT7(P24)	 Interrupt source flag can be set. Event inputs for timer 0 or 1 are enabled. 	2.5 to 3.6	1			
	tPIH(2) tPIL(2)	INT3(P73) when noise filter time constant is 1/1	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.5 to 3.6	2			tCYC
	tPIH(3) tPIL(3)	INT3(P73) when noise filter time constant is 1/32	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.5 to 3.6	64			
	tPIH(4) tPIL(4)	INT3(P73) when noise filter time constant is 1/128	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.5 to 3.6	256			
	tPIL(5)	RES	Resetting is enabled.	2.5 to 3.6	200			μs

Pulse Input Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

AD Converter Characteristics at $V_{SS}\mathbf{1}=V_{SS}\mathbf{2}=V_{SS}\mathbf{3}=\mathbf{0}V$

<12bits AD Converter Mode at Ta = -40° C to $+85^{\circ}$ C >

Demonster	O maked	Dia (Desservive	Canditiana			Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P80) to		2.5 to 3.6		12		bit
Absolute accuracy	ET	AN6(P86), AN8(P70),	(Note 6-1)	2.5 to 3.6			±16	LSB
Conversion time	ersion time TCAD AN9(P71),		See Conversion time calculation	3.0 to 3.6	64		115	
	AN10(XT1), AN11(XT2)	formulas. (Note 6-2)	2.7 to 3.6	128		230	μs	
		ANTI(ATZ)		2.5 to 3.6	256		460	
Analog input voltage range	VAIN			2.5 to 3.6	V _{SS}		V _{DD}	V
Analog port	IAINH(1)	analog channel	VAIN=V _{DD}	2.5 to 3.6			1	
input current	IAINL(1)		VAIN=V _{SS}	2.5 to 3.6	-1			μA

<8bits AD Converter Mode at Ta = -40° C to $+85^{\circ}$ C >

Demonster	Ormatical	Pin/Remarks				Specif	ication	
Parameter	Symbol	FINAL	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	Ν	AN0(P80) to		2.5 to 3.6		8		bit
Absolute accuracy	ET	AN6(P86), AN8(P70),	(Note 6-1)	2.5 to 3.6			±1.5	LSB
Conversion	TCAD	AN9(P71),	See Conversion time calculation	3.0 to 3.6	39		71	
time		AN10(XT1), AN11(XT2)	formulas. (Note 6-2)	2.7 to 3.6	79		140	μs
		ANTI(X12)		2.5 to 3.6	157		280	
Analog input voltage range	VAIN			2.5 to 3.6	V _{SS}		V _{DD}	V
Analog port	IAINH(1)	analog channel	VAIN=V _{DD}	2.5 to 3.6			1	
input current	IAINL(1)		VAIN=V _{SS}	2.5 to 3.6	-1			μA

12bits AD Converter Mode: TCAD(Conversion time)= $((52/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$ 8bits AD Converter Mode: TCAD(Conversion time)= $((32/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$

- Note 6-1: The quantization error $(\pm 1/2LSB)$ must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.
- Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

Consumption Current Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter	Symbol	Pins/Rema	Conditions			Specifi	cation	
i alametei	Gymbol	rks	Conditions	V _{DD} [V]	min	Тур	Max	unit
Normal mode consumption current (Note 7-1)	IDDOP(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	 FmCF=12MHz ceramic oscillation mode FmX'tal=32.768kHz by crystal oscillation mode System clock set to 12MHz side Internal RC oscillation stopped frequency variable RC oscillation stopped 1/1 frequency division ratio. 	2.7 to 3.6		3.6	9.5	
	IDDOP(2)		 FmCF=8MHz ceramic oscillation mode FmX'tal=32.768kHz by crystal oscillation mode System clock set to 8MHz side Internal RC oscillation stopped frequency variable RC oscillation stopped 1/1 frequency division ratio. 	2.5 to 3.6		2.9	7.1	mA
	IDDOP(3)		 FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz by crystal oscillation mode System clock set to internal RC oscillation frequency variable RC oscillation stopped 1/2 frequency division ratio. 	2.5 to 3.6		0.186	0.96	
	IDDOP(4)		 FmCF=0Hz (oscillation stopped) FmX'al=32.768kHz by crystal oscillation mode. System clock set to 32.768kHz side. Internal RC oscillation stopped frequency variable RC oscillation stopped 1/2 frequency division ratio. 	2.5 to 3.6		11.5	58	μΑ
HALT mode consumption current (Note 7-1)	IDDHALT(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	 HALT mode FmCF=12MHz ceramic oscillation mode FmX'tal=32.768kHz by crystal oscillation mode System clock set to 12MHz side Internal RC oscillation stopped frequency variable RC oscillation stopped 1/1 frequency division ratio. 	2.7 to 3.6		1.5	2.9	
	IDDHALT(2)		 HALT mode FmCF=8MHz ceramic oscillation mode FmX'tal=32.768kHz by crystal oscillation mode System clock set to 8MHz side Internal RC oscillation stopped frequency variable RC oscillation stopped 1/1 frequency division ratio. 	2.5 to 3.6		1	1.8	mA
	IDDHALT(3)		 HALT mode FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz by crystal oscillation mode System clock set to internal RC oscillation frequency variable RC oscillation stopped 1/2 frequency division ratio. 	2.5 to 3.6		0.067	0.28	

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors

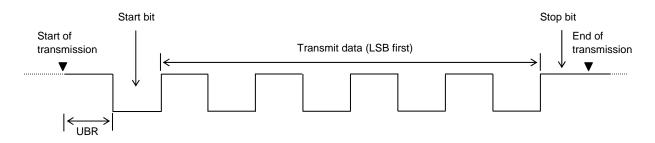
Continued on next page.

Parameter	Cumhol	Pins/Remarks	Conditions		Specification			
Falameter	Symbol	FIIIS/Remaiks	Conditions	V _{DD} [V]	min	typ	Max	unit
HALT mode consumption current (Note 7-1)	IDDHALT(4)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	 HALT mode FmCF=0Hz (oscillation stopped) FmX'al=32.768kHz by crystal oscillation mode. System clock set to 32.768kHz side. Internal RC oscillation stopped frequency variable RC oscillation stopped 1/2 frequency division ratio. 	2.5 to 3.6		7.4	49	μΑ
HOLD mode consumption current	IDDHOLD(1)	V _{DD} 1	HOLD mode CF1=V _{DD} or open (External clock mode)	2.5 to 3.6		0.04	20	
Timer HOLD mode consumption current	IDDHOLD(2)		 Timer HOLD mode CF1=V_{DD} or open (External clock mode) FmX'tal=32.768kHz by crystal oscillation mode 	2.5 to 3.6		5.9	35	μΑ

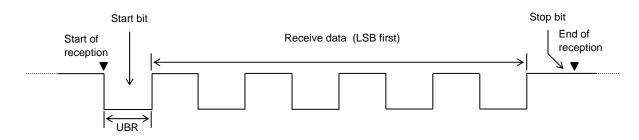
Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors

F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}2$	3 = 0V
--	--------

Dementer	Ourseland	Dine (Demodue	Qualities			Specif	ication	
Parameter	Symbol	Pins/Remarks	Conditions	V _{DD} [V]	Min	Тур	Max	unit
Onboard programming current	IDDFW(1)	V _{DD} 1	Without CPU curent	2.7 to 3.6		7	11	mA
Programming	tFW(1)		2k byte Erasing	2.7 to 3.6		12	15	ms
time	tFW(2)		2 byte Programming	2.7 to 3.6		35	45	μs

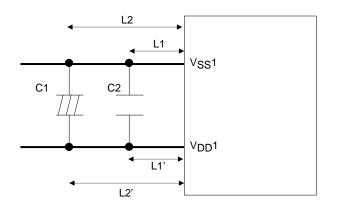

UART (Full Duplex) Operating Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Descention	Querrale al	Dia (De se estas	Quantitiana			Spe	cification	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Transfer rate	UBR	P32(UTX1),						
		P33(URX1).		2.5 to 3.6	16/3		8192/3	tCYC
		P34(UTX2),		2.5 10 3.6	10/5		0192/3	
		P35(URX2)						
Data length:	7, 8, and 9	bits (LSB first)						
Stop bits:	1 bit (2-bit	in continuous d	lata transmission)					


Parity bits:

None

Example of Continuous 8-bit Data Transmission Mode Processing (first transmit data=55H)


Example of Continuous 8-bit Data Reception Mode Processing (first receive data=55H)

VDD1, VSS1 Terminal Condition

It is necessary to place capacitors between VDD1 and VSS1 as describe below.

- Place capacitors as close to VDD1 and VSS1 as possible.
- Place capacitors so that the length of each terminal to the each leg of the capacitor be equal (L1 = L1', L2 = L2').
- Place high capacitance capacitor C1 and low capacitance capacitor C2 in parallel.
- Capacitance of C2 must be more than $0.1\mu F$.
- Use thicker pattern for VDD1 and VSS1.

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Nominal Frequency	Vendor Name	Oscillator Name	Circuit Constant				Operating	Oscillation Stabilization Time		
			C1 [pF]	C2 [pF]	Rf1 [Ω]	Rd1 [Ω]	Voltage Range [V]	typ [ms]	max [ms]	Remarks
12MHz	MURATA	CSTCE12M0G52-R0	(10)	(10)	Open	330	2.2 to 3.6	0.02	0.2	C1, C2 integrated type
8MHz		CSTCE8M00G52-R0	(10)	(10)	Open	680	2.2 to 3.6	0.02	0.2	C1, C2 integrated type
		CSTLS8M00G53-B0	(15)	(15)	Open	680	2.2 to 3.6	0.02	0.2	C1, C2 integrated type
4MHz		CSTCR4M00G53-R0	(15)	(15)	Open	1.5K	2.2 to 3.6	0.02	0.2	C1, C2 integrated type
		CSTLS4M00G53-B0	(15)	(15)	Open	1.5K	2.2 to 3.6	0.01	0.1	C1, C2 integrated type

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after VDD goes above the operating voltage lower limit (see Fig. 4).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sam	nle Subsystem Clock Oscillator (Circuit with a Crystal Oscillator
Table 2 Characteristics of a San	ipie Subsystem Clock Oscillator v	Circuit with a Crystal Oscillator

Nominal Frequency	Vendor Name	Oscillator Name	Circuit Constant				Operating Voltage	Oscillation Stabilization Time		
			C3 [pF]	C4 [pF]	Rf2 [Ω]	Rd2 [Ω]		typ [s]	max [s]	Remarks
32.768kHz	EPSON TOYOCOM	MC-306	9	9	OPEN	330K	2.2 to 3.6	1.0	3.0	CL=7pF

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the oscillation to get stabilized after the HOLD mode is reset (see Figure 4).

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

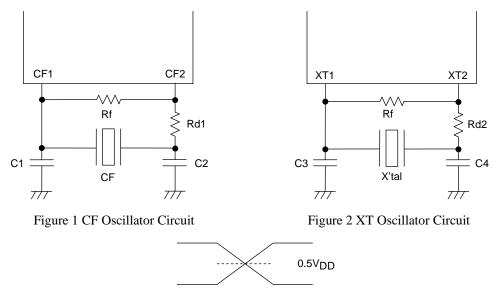
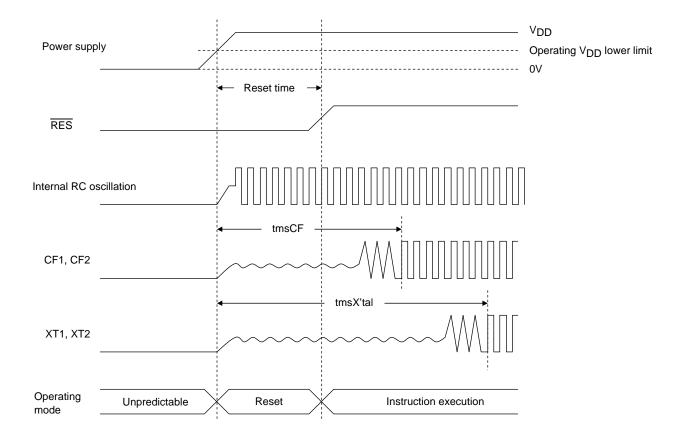
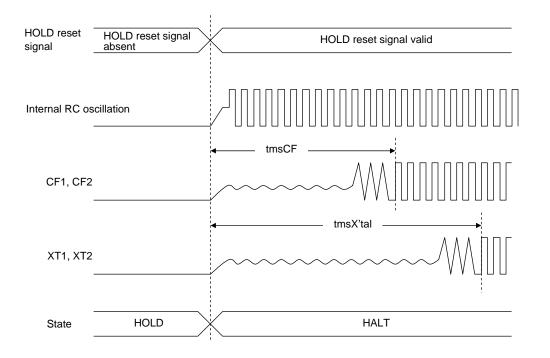
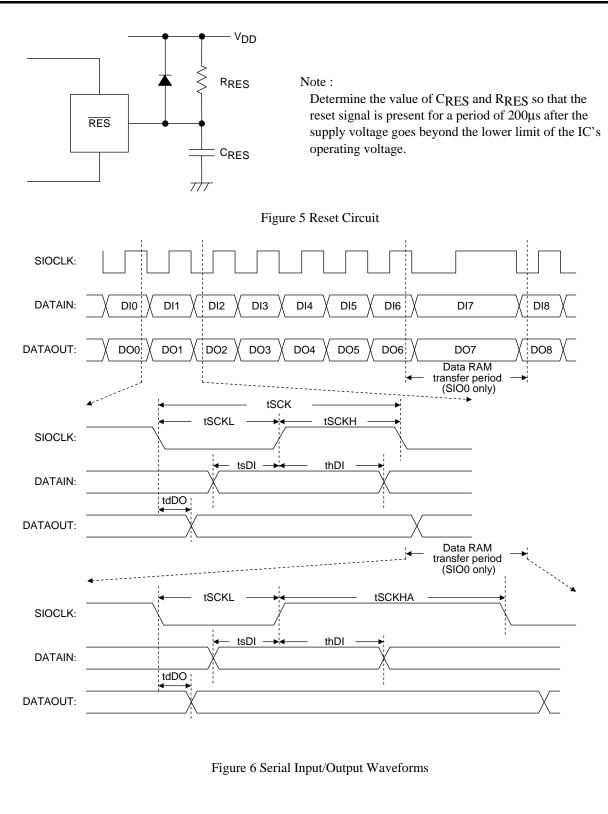




Figure 3 AC Timing Measurement Point



Reset Time and Oscillation Stabilization Time

HOLD Reset Signal and Oscillation Stabilization Time

Figure 4 Oscillation Stabilization Times

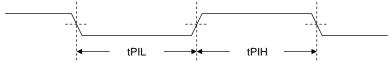
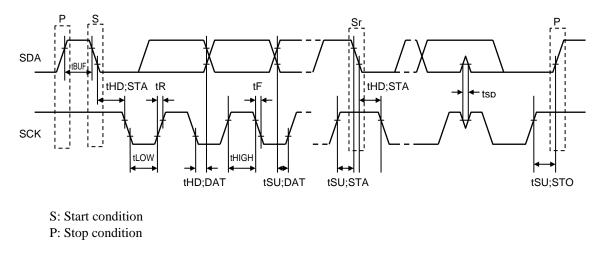



Figure 7 Pulse Input Timing Signal Waveform

Sir: Restart condition

Figure 8 I²C Timing

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 8-bit Microcontrollers - MCU category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

CY8C20524-12PVXIT_MB95F012KPFT-G-SNE2_MB95F013KPMC-G-SNE2_MB95F263KPF-G-SNE2_MB95F264KPFT-G-SNE2 MB95F398KPMC-G-SNE2_MB95F478KPMC2-G-SNE2_MB95F564KPF-G-SNE2_MB95F636KWQN-G-SNE1_MB95F696KPMC-G-SNE2 MB95F698KPMC2-G-SNE2_MB95F698KPMC-G-SNE2_MB95F818KPMC1-G-SNE2_901015X_CY8C3MFIDOCK-125_403708R MB95F354EPF-G-SNE2_MB95F564KWQN-G-SNE1_MB95F636KP-G-SH-SNE2_MB95F694KPMC-G-SNE2_MB95F778JPMC1-G-SNE2 MB95F818KPMC-G-SNE2_LC87F0G08AUJA-AH_CP8361BT_CG8421AF_MB95F202KPF-G-SNE2_DF36014FPV_5962-8768407MUA MB95F318EPMC-G-SNE2_MB94F601APMC1-GSE1_MB95F656EPF-G-SNE2_LC78615E-01US-H_LC87F5WC8AVU-QIP-H MB95F108AJSPMC-G-JNE1_73S1210F-68M/F/PJ_MB89F538-101PMC-GE1_LC87F7DC8AVU-QIP-H_MB95F876KPMC-G-SNE2 MB88386PMC-GS-BNDE1_LC87FBK08AU-SSOP-H_LC87F2C64AU-QFP-H_MB95F636KNWQN-G-118-SNE1_MB95F136NBSTPFV-GS-N2E1_LC87F5NC8AVU-QIP-E_CY8C20324-12LQXIT_LC87F76C8AU-TQFP-E_CG8581AA_LC87F2G08AU-SSOP-E_CP8085AT_ATTINY3224-SSU