

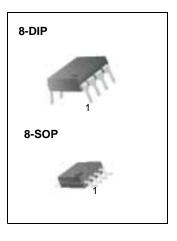
Is Now Part of

ON Semiconductor®

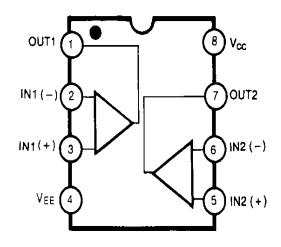
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

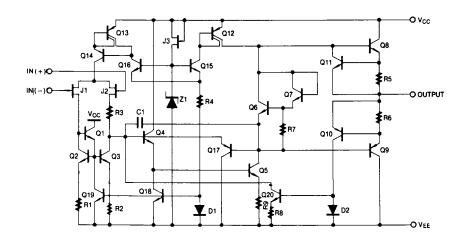

LF353 Dual Operational Amplifier (JFET)

Features


- Internally trimmed offset voltage: 10mV
- Low input bias current: 50pA
- Wide gain bandwidth: 4MHz
- High slew rate: 13V/µs
- High Input impedance: $10^{12}\Omega$

Description

The LF353 is a JFET input operational amplifier with an internally compensated input offset voltage. The JFET input device provides wide bandwidth, low input bias currents and offset currents.



Internal Block Diagram

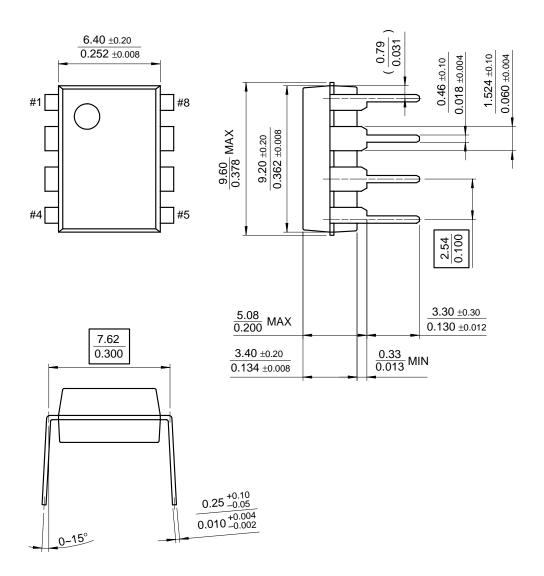
Schematic Diagram

(One Section Only)

Absolute Maximum Ratings

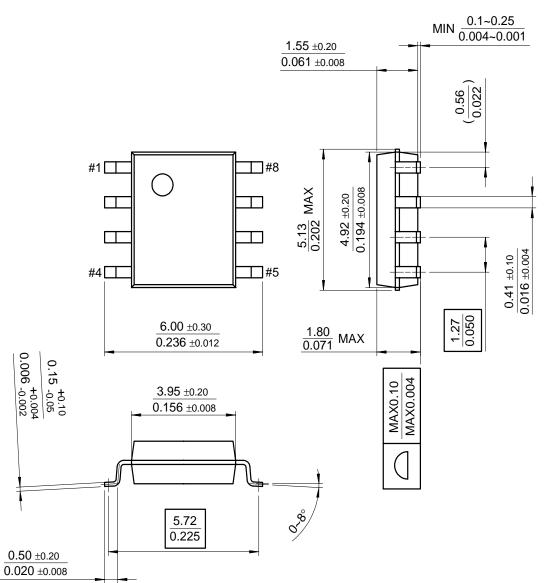
Parameter	Symbol	Value	Unit
Power Supply Voltage	Vcc	±18	V
Differential Input Voltage	VI(DIFF)	30	V
Input Voltage Range	VI	±15	V
Output Short Circuit Duration	-	Continuous	-
Power Dissipation	PD	500	mW
Operating Temperature Range	TOPR	0 ~ +70	٥°C
Storage Temperature Range	TSTG	-65 ~ +150	٥°C

Electrical Characteristics


(VCC =+15V, VEE= -15V, TA=25 $^{\circ}$ C, unless otherwise specified)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
Input Offset Voltage	Vio	Rs=10KΩ		-	5.0	10	mV
			0 °C≤TA≤+70 °C	-	-	-	-
Input Offset Voltage Drift	$\Delta V_{IO}/\Delta T$	Rs=10KΩ	0 °C≤T _A ≤+70 °C	-	10	-	μV/ °C
Input Offset Current	liO			-	25	100	pА
			0 °C≤T _A ≤+70 °C	-	-	4	nA
Input Pige Current	IBIAS			-	50	200	pА
Input Bias Current			0 °C≤TA≤+70 °C	-	-	8	nA
Input Resistance	RI	-		-	10 ¹²	-	Ω
Large Signal Voltage Gain	Gv	$VO(P-P) = \pm 10V$		25	100	-	V/mV
		$R_L = 2K\Omega$	0 °C≤T _A ≤+70 °C	15	-	-	-
Output Voltage Swing	VO(P_P)	RL = 10KΩ		±12	±13.5	-	V
Input Voltage Range	VI(R)	-		±11	±15/-12	-	V
Common Mode Rejection Ratio	CMRR	Rs≤10KΩ		70	100	-	dB
Power Supply Rejection Ratio	PSRR	$R_S \le 10 K\Omega$		70	100	-	dB
Power Supply Current	ICC	-		-	3.6	6.5	mA
Slew Rate	SR	G _V = 1		-	13	-	V/µS
Gain-Bandwidth Product	GBW	-		-	4	-	MHz
Channel Seperation	CS	f = 1Hz ~ 20KHz (Input referenced)		-	120	-	dB
Equivalent Input Noise Voltage	VNI	Rs = 100Ω f = 1KHz		-	16	-	nV/ √Hz
Equivalent Input Noise Current	I _{NI}	f = 1KHz		-	0.01	-	pA/ √Hz

Mechanical Dimensions


Package

8-DIP

Mechanical Dimensions

Package

8-SOP

Ordering Information

Product Number	Package	Operating Temperature
LF353N	8-DIP	0 ~ + 70°C
LF353M	8-SOP	0~+70 C

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

NCV33072ADR2G LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD#PBF ADA4523-1BCPZ-RL7 NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCS20282FCTTAG