

Programmable Shunt Regulator

LM431SA, LM431SB, LM431SC

Description

The LM431SA / LM431SB / LM431SC are three-terminal the output adjustable regulators with thermal stability over operating temperature range. The output voltage can be set any value between V_{REF} (approximately 2.5 V) and 36 V with two external resistors. These devices have a typical dynamic output impedance of 0.2 Ω . Active output circuit provides a sharp turn-on characteristic, making these devices excellent replacement for zener diodes in many applications.

Features

- Programmable Output Voltage to 36 V
- Low Dynamic Output Impedance: 0.2 Ω (Typical)
- Sink Current Capability: 1.0 to 100 mA
- Equivalent Full-Range Temperature Coefficient of 50 ppm/°C (Typical)
- Temperature Compensated for Operation Over Full Rated Operating Temperature Range
- Low Output Noise Voltage
- Fast Turn-on Response
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

To the last

- 1. Ref 2. Anode
- 3. Cathode

SOT-89 CASE 528AH

Cathode
 Ref

3. Anode

3. Anode

SOT-23FL CASE 318AB

- M32 M3
 1. Ref 1. Cathode
 2. Cathode 2. Ref
- SOT-23 CASE 318BM
- 2. Ref 3. Anode

ORDERING INFORMATION

Product Number	Output Voltage Tolerance	Operating Temperature	Top Mark ⁽¹⁾	Package	Shipping [†]
LM431SACMFX	2%	−25 to +85°C	43A □	SOT-23FL 3L	Tape and Reel
LM431SACM3X]		43L ⊚	SOT-23 3L	
LM431SACM32X]		43G ⊚	SOT-23 3L	
LM431SBCMFX	1%		43B □	SOT-23FL 3L	
LM431SBCM3X			43M ⊚	SOT-23 3L	
LM431SBCM32X			43H ⊚	SOT-23 3L	
LM431SCCMLX	0.5%		43C	SOT-89 3L	
LM431SCCMFX]		43C □	SOT-23FL 3L	
LM431SCCM3X]		43N ⊚	SOT-23 3L	
LM431SCCM32X			43J ⊚	SOT-23 3L	
LM431SAIMFX	2%	−40 to +85°C	43AI	SOT-23FL 3L	
LM431SBIMFX	1%		43BI	SOT-23FL 3L	
LM431SCIMFX	0.5%		43CI	SOT-23FL 3L	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{1.} SOT-23 and SOT-23FL have basically four-character marking except LM431SAIMFX. (3 letters for device code + 1 letter for date code) SOT-23FL date code is composed of 1 digit numeric or alphabetic week code adding bar-type year code.

BLOCK DIAGRAM

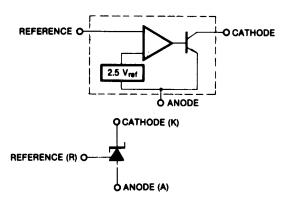


Figure 1. Block Diagram

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Para	Value	Unit		
V _{KA}	Cathode Voltage	Cathode Voltage			
I _{KA}	Cathode current Range (Continuous)		-100 to +150	mA	
I _{REF}	Reference Input Current Range		-0.05 to +10.00	mA	
$R_{\theta JA}$	Thermal Resistance Junction-Air (2, 3)	ML Suffix Package (SOT-89)	220	°C/W	
		MF Suffix Package (SOT-23FL)	350	1	
		M32, M3 Suffix Package (SOT-23)	400		
P_{D}	Power Dissipation (4, 5)	ML Suffix Package (SOT-89)	560	mW	
		MF Suffix Package (SOT-23FL)	350	1	
		M32, M3 Suffix Package (SOT-23)	310		
TJ	Junction Temperature		150	°C	
т	Operating Temperature Range	All products except LM431SAIMFX	-25 to +85	°C	
T _{OPR}	Operating reinperature natige	LM431SAIMFX, SBIMFX, SCIMFX	-40 to +85	1	
T _{STG}	Storage Temperature Range	•	-65 to +150	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 2. Thermal resistance test board
 - Size: 1.6 mm x 76.2 mm x 114.3 mm (1S0P) JEDEC Standard: JESD51-3, JESD51-7.
- 3. Assume no ambient airflow.
- 4. $T_{JMAX} = 150$ °C; ratings apply to ambient temperature at 25°C.
- 5. Power dissipation calculation: $P_D = (T_J T_A) / R_{\theta JA}$

RECOMMENDED OPERATING CONDITIONS

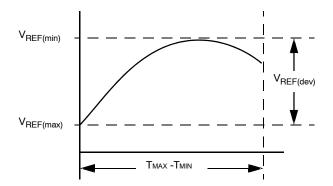
Symbol	Parameter	Min.	Max.	Unit
V _{KA}	Cathode Voltage	V_{REF}	36	V
I _{KA}	Cathode Current	1	100	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (Note 6, Values are at T_A = 25°C unless otherwise noted)

				L	M431S	A	LM431SB			LM431SC			
Symbol	Parameter	Condition	ons	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
VREF	Reference Input Voltage	$V_{KA} = V_{REF}$, $I_{KA} = 10$) mA	2.450	2.500	2.550	2.470	2.495	2.520	2.482	2.495	2.508	V
$\Delta V_{REF} / \Delta T$	Deviation of Reference Input Voltage	,	SOT-89 SOT-23FL		4.5	17.0		4.5	17.0		4.5	17.0	mV
	Over- Tempera- ture	IMIN ≤ IA ≤ IMAX	SOT-23		6.6	24		6.6	24		6.6	24	mV
ΔV _{REF} / ΔV _{KA}	Ratio of Change in Reference Input Voltage to the	ne Cath-	ΔV _{KA} = 10 V-V _{REF}		-1.0	-2.7		-1.0	-2.7		-1.0	-2.7	mV/V
	Change in Cath- ode Voltage		ΔV _{KA} = 36 V – 10 V		-0.5	-2.0		-0.5	-2.0		-0.5	-2.0	
IREF	Reference Input Current	$I_{KA} = 10 \text{ mA}, R_1 = 1$	10 KΩ, R ₂ = ∞		1.5	4.0		1.5	4.0		1.5	4.0	μА
$\Delta I_{REF} / \Delta T$	Deviation of Reference Input Current Over Full Temper-	$R_1 = 10 \text{ K}\Omega$	SOT-89 SOT-23FL		0.4	1.2		0.4	1.2		0.4	1.2	μА
	ature Range	$T_A = Full Range$	SOT-23		0.8	2.0		0.8	2.0		0.8	2.0	μА
IKA(MIN)	Minimum Cathode Current for Regu- lation	VKA = VREF			0.45	1.00		0.45	1.00		0.45	1.00	mA
IKA(OFF)	Off -Stage Cath- ode Current	$V_{KA} = 36 \text{ V}, V_{REF} =$	0		0.05	1.00		0.05	1.00		0.05	1.00	μА
ZKA	Dynamic Impedance	$VKA = VREF, I_{KA} = 1$ $f \ge 1.0 \text{ kHz}$	to 100 mA,		0.15	0.50		0.15	0.50		0.15	0.50	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


6. LM431SAI, LM431SBI, LM431SCI: $-T_{A(min)} = -40^{\circ}C$, $T_{A(max)} = +85^{\circ}C$ All other pins: $-T_{A(min)} = -25^{\circ}C$, $T_{A(max)} = +85^{\circ}C$

ELECTRICAL CHARACTERISTICS (Continued) (Notes 7 and 8, Values are at T_A = 25°C unless otherwise noted)

				LI	LM431SAI		LM431SBI			LM431SCI			
Symbol	Parameter	Co	nditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{REF}	Reference Input Voltage	V _{KA} = V _{REF} , I _{KA}	= 10 mA	2.450	2.500	2.550	2.470	2.495	2.520	2.482	2.495	2.508	V
V _{REF(dev)}	Deviation of Reference Input Voltage Over-Temperature	$V_{KA} = V_{REF}$ $I_{KA} = 10$ mA, $T_{MIN} \le T_A \le T_{MAX}$			5	20		5	20		5	20	mV
ΔV _{REF} / ΔV _{KA}	Ratio of Change in Reference Input Volt-	I _{KA} = 10 mA	$\Delta V_{KA} = 10 \text{ V} - V_{REF}$		-1.0	-2.7		-1.0	-2.7		-1.0	-2.7	mV/V
	age to Change in Cathode Voltage		$\Delta V_{KA} = 36 \text{ V} - 10 \text{ V}$		-0.5	-2.0		-0.5	-2.0		-0.5	-2.0	
I _{REF}	Reference Input Current	I _{KA} = 10 mA, R	=10 KΩ, R ₂ = ∞		1.5	4.0		1.5	4.0		1.5	4.0	μΑ
I _{REF(dev)}	Deviation of Reference Input Current Over Full Temperature Range	TMIN < TA < TM	₁ = 10 KΩ, R ₂ = ∞, αx		0.8	2.0		0.8	2.0		0.8	2.0	μА
I _{KA(MIN)}	Minimum Cathode Current for Regulation	VKA = VREF	VKA = VREF		0.45	1.00		0.45	1.00		0.45	1.00	mA
I _{KA(OFF)}	Off -Stage Cathode Current	$V_{KA} = 36 \text{ V}, V_{REF} = 0$			0.05	1.00		0.05	1.00		0.05	1.00	μΑ
ZKA	Dynamic Impedance	$V_{KA} = V_{REF}, I_{KA}$ f \geq 1.0 kHz	= 1 to 100 mA,		0.15	0.50		0.15	0.50		0.15	0.50	Ω

- LM431SAI, LM431SBI, LM431SCI: T_{A(min)} = -40°C, T_{A(max)} = +85°C
 All other pins: T_{A(min)} = -25°C, T_{A(max)} = +85°C
 The deviation parameters V_{REF(dev)} and I_{REF(dev)} are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV_{REF} is defined as:

$$|\alpha V_{REF}| \left(\frac{ppm}{{}^{\circ}C}\right) = \frac{\left(\frac{V_{REF(dev)}}{V_{REF}(at\ 25{}^{\circ}C)}\right) \cdot 10^{6}}{T_{MAX} - T_{MIN}}$$

where T_{MAX}-T_{MIN} is the rated operating free-air temperature range

 αV_{REF} can be positive or negative, depending on whether minimum V_{REF} or maximum V_{REF}, respectively, occurs at the lower temperature.

Example:

 $V_{REF(dev)}$ = 4.5 mV, V_{REF} = 2500 mV at 25°C,

 $T_{MAX} - T_{MIN} = 125^{\circ}C$ for LM431SAI.

$$|\alpha V_{REF}| = \frac{\left(\frac{4.5 \text{ mV}}{2500 \text{ mV}}\right) \cdot 10^6}{125^{\circ}C} = 14.4 \text{ ppm/}^{\circ}C$$

Because minimum V_{REF} occurs at the lower temperature, the coefficient is positive.

TEST CIRCUITS

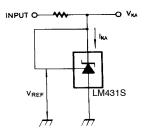


Figure 2. Test Circuit for $V_{KA} = V_{REF}$

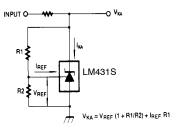


Figure 3. Test Circuit for $V_{KA} \ge V_{REF}$

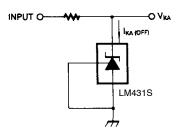


Figure 4. Test Circuit for I_{KA(OFF)}

TYPICAL APPLICATIONS

$$V_{O} = \left(1 + \frac{R_{1}}{R_{2}}\right) V_{ref}$$

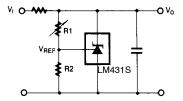
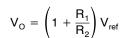



Figure 5. Shunt Regulator

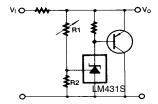
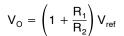



Figure 7. High Current Shunt Regulator

Figure 8. Current Limit or Current Source

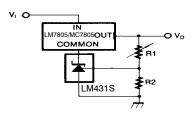


Figure 6. Output Control for Three-Terminal Fixed Regulator

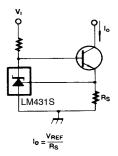


Figure 9. Constant-Current Sink

TYPICAL PERFORMANCE CHARACTERISTICS

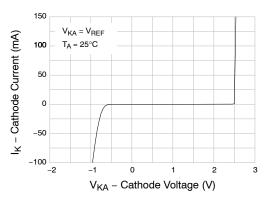


Figure 10. Cathode Current vs. Cathode Voltage

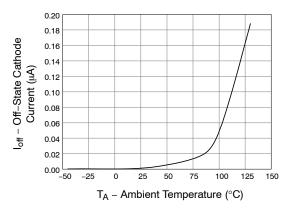


Figure 12. OFF-State Cathode Current vs. Ambient Temperature

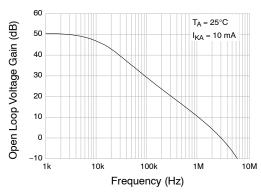


Figure 14. Frequency vs. Small Signal Voltage Amplification

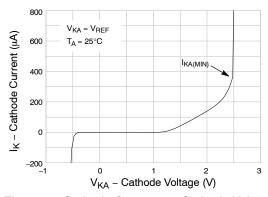


Figure 11. Cathode Current vs. Cathode Voltage

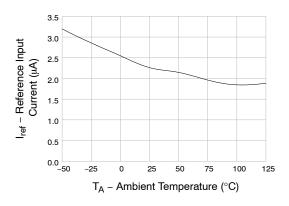


Figure 13. Reference Input Current vs. Ambient Temperature

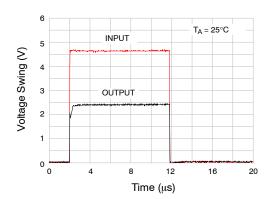


Figure 15. Pulse Response

TYPICAL PERFORMANCE CHARACTERISTICS

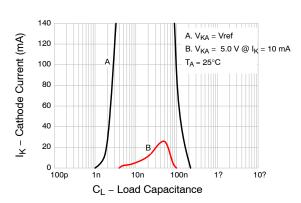


Figure 16. Stability Boundary Conditions

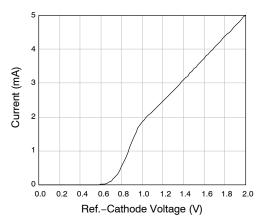


Figure 18. Reference-Cathode Diode Curve

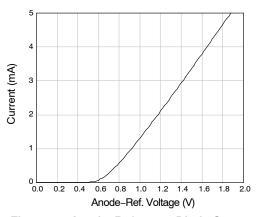


Figure 17. Anode-Reference Diode Curve

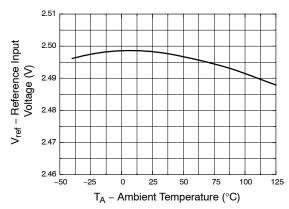
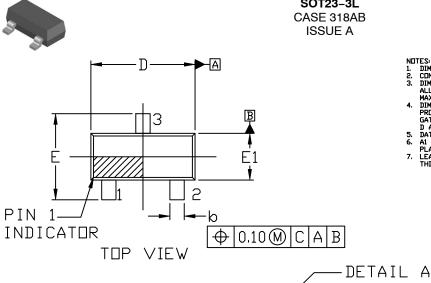
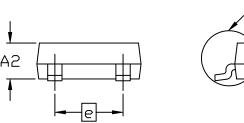
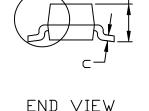
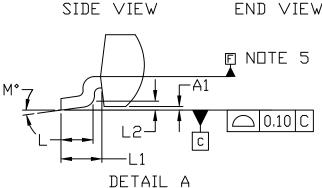
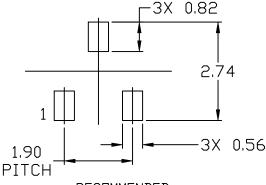



Figure 19. Reference Input Voltage vs. Ambient Temperature

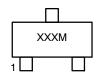

SOT23-3L CASE 318AB


DATE 14 DEC 2021


- TES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
 CONTROLLING DIMENSION: MILLIMETERS
 DIMENSION & DUES NOT INCLUDE DAMBAR PROTRUSION.
 ALLOWABLE PROTRUSION SHALL BE 0.127 mm IN EXCESS OF
 MAXIMUM MATERIAL CONDITION.
 DIMENSIONS D AND EI DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR
 GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSIONS
 D AND EI ARE DETERMINED AT DATUM F.
 DATUMS A AND B ARE TO BE DETERMINED AT DATUM F.
 AI IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING
 PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.


	PLANE	: TO	THE L	.OVE	ST P	DINT	ON T	HE	PAC	KAGE	BOD	Y.
7.	LEAD	THIC	KNESS	(C)	AND	LEAD	VII)TH	(b)	INCLU	JDE	PLATING
	THICK	NESS	: .									

	MILLIMETERS					
DIM	MIN.	N□M.	MAX.			
Α			1.15			
A1	0.00		0.10			
A2	0.90	1.00	1.10			
b	0.30		0.50			
C	C	.127 REI	-			
D	2.80	2.90	3.00			
Е	2.25	2.40	2.55			
E1	1.20	1.30	1.40			
e		1.90 BSC				
L	0.30		-			
L1	0.55 REF					
L2	0.25 REF					
М	0*		8•			



RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

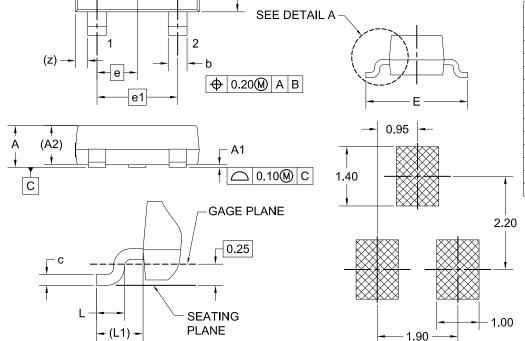
GENERIC MARKING DIAGRAM*

XXX = Specific Device Code = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON27911H	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOT23-3L		PAGE 1 OF 1				

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.



SOT-23 CASE 318BM ISSUE A

DATE 01 SEP 2021

- A) REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE H.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE INCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M 2009.

Α

В

E1

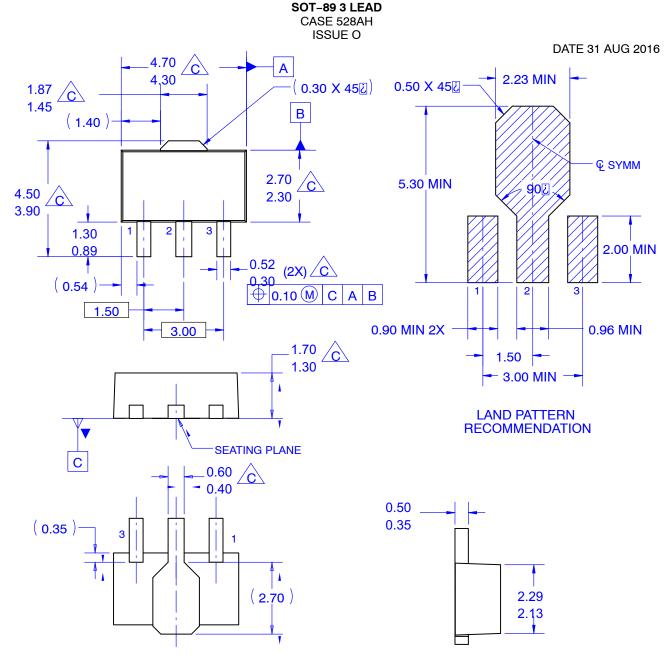
2000.						
DIM	MILLIMETERS					
Diivi	MIN.	NOM.	MAX.			
Α			1.20			
A1	0.00	0.05	0.10			
A2	().93 REF				
b	0.37	0.44	0.60			
С	0.08	0.15	0.23			
D	2.72	2.92	3.12			
E	2.10	2.40	2.70			
E1	1.15	1.30	1.50			
е	(0.95 BSC	;			
e1	,	1.90 BSC	;			
L	0.20					
L1	0.55 REF					
Z	().29 REF				

GENERIC MARKING DIAGRAM*

DETAIL A

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

LAND PATTERN RECOMMENDATION


XXX = Specific Device Code
M = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13784G	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
DESCRIPTION:	SOT-23		PAGE 1 OF 1

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

NOTES: UNLESS OTHERWISE SPECIFIED.

A. REFERENCE TO JEDEC TO-243 VARIATION AA.

B. ALL DIMENSIONS ARE IN MILLIMETERS.

 $\overline{m{C}}$ DOES NOT COMPLY JEDEC STANDARD VALUE.

D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSION.

E. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994.

DOCUMENT NUMBER:	98AON13791G	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOT-89 3 LEAD		PAGE 1 OF 1				

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

a Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Voltage References category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

REF01J/883 5962-8686103XC NCV431BVDMR2G LT6654AMPS6-2.048#TRMPBF SCV431AIDMR2G LT1019AIS8-2.5

LT6654AMPS6-3.3#TRM SC431ILPRAG AP432AQG-7 NJM2823F-TE1 TL431-A MCP1502T-18E/CHY MCP1502T-40E/CHY

TL431ACZ KA431SLMF2TF KA431SMF2TF KA431SMFTF LM4040QCEM3-3.0/NOPB LM4041C12ILPR LM4120AIM5-2.5/NOP

LM431SCCMFX TS3330AQPR REF5040MDREP REF3012AIDBZR LM285BXMX-1.2/NOPB LM385BM-2.5/NOPB LM4040AIM3-10.0

LM4040BIM3-4.1 LM4040CIM3-10.0 LM4040CIM3X-2.0/NOPB LM4041BSD-122GT3 LM4041QDIM3-ADJ/NO

LM4050QAEM3X4.1/NOPB LM4051BIM3-ADJ/NOPB LM4051CIM3X-1.2/NOPB LM4128CMF-1.8/NOPB LM4132DMF-1.8/NOPB

LM4132EMF-1.8/NOPB LM4132EMF-2.0/NOPB LM4140CCMX-1.2/NOPB LM431CIM LM385BD-2.5R2G LM385M-2.5/NOPB

LM4030AMF-4.096/NOPB LM4040D30ILPR LM4051CIM3X-ADJ/NOPB AP432YG-13 AS431ANTR-G1 AS431BZTR-E1 AN431AN-ATRG1