# Single, Dual, Quad Low-Voltage, Rail-to-Rail Operational Amplifiers

# LMV321, NCV321, LMV358, LMV324

The LMV321, LMV321I, NCV321, LMV358/LMV358I and LMV324 are CMOS single, dual, and quad low voltage operational amplifiers with rail-to-rail output swing. These amplifiers are a cost-effective solution for applications where low power consumption and space saving packages are critical. Specification tables are provided for operation from power supply voltages at 2.7 V and 5 V. Rail-to-Rail operation provides improved signal-to-noise preformance. Ultra low quiescent current makes this series of amplifiers ideal for portable, battery operated equipment. The common mode input range includes ground making the device useful for low-side current-shunt measurements. The ultra small packages allow for placement on the PCB in close proximity to the signal source thereby reducing noise pickup.

#### **Features**

- Operation from 2.7 V to 5.0 V Single-Sided Power Supply
- LMV321 Single Available in Ultra Small 5 Pin SC70 Package
- No Output Crossover Distortion
- Rail-to-Rail Output
- Low Quiescent Current: LMV358 Dual 220 μA, Max per Channel
- No Output Phase–Reversal from Overdriven Input
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

#### **Typical Applications**

- Notebook Computers and PDA's
- Portable Battery-Operated Instruments
- Active Filters



### ON Semiconductor®

#### www.onsemi.com



#### ORDERING AND MARKING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.

### MARKING DIAGRAMS TSOP-5



AAC = Specific Device Code

Μ = Date Code = Pb-Free Package

(Note: Microdot may be in either location)

5 3ACAYW=

3AC = Specific Device Code V358 = Specific Device Code = Assembly Location = Assembly Location Α Υ

W

= Year = Work Week W = Pb-Free Package

(Note: Microdot may be in either location) (Note: Microdot may be in either location)



Micro8

UDFN8

= Pb-Free Package



AC = Specific Device Code

= Date Code M

= Year

= Work Week

= Pb-Free Package



V358 = Specific Device Code = Assembly Location Α

L = Wafer Lot Υ = Year W = Work Week = Pb-Free Package

SOIC-14



LMV324 = Specific Device Code = Assembly Location

WL= Wafer Lot Υ = Year WW = Work Week G = Pb-Free Package TSSOP-14



LMV324 = Specific Device Code = Assembly Location

= Wafer Lot L Υ = Year W = Work Week = Pb-Free Package

#### **PIN CONNECTIONS**



#### **MAXIMUM RATINGS**

| Symbol            | Rating                                                                                                                       | Value                                 | Unit           |
|-------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|
| V <sub>S</sub>    | Supply Voltage (Operating Range V <sub>S</sub> = 2.7 V to 5.5 V)                                                             | 5.5                                   | V              |
| V <sub>IDR</sub>  | Input Differential Voltage                                                                                                   | ± Supply Voltage                      | V              |
| V <sub>ICR</sub>  | Input Common Mode Voltage Range                                                                                              | -0.5 to (V+) + 0.5                    | V              |
|                   | Maximum Input Current                                                                                                        | 10                                    | mA             |
| t <sub>So</sub>   | Output Short Circuit (Note 1)                                                                                                | Continuous                            |                |
| TJ                | Maximum Junction Temperature                                                                                                 | 150                                   | °C             |
| T <sub>A</sub>    | Operating Ambient Temperature Range LMV321, LMV358, LMV324 LMV321I, LMV358I NCV321 (Note 2)                                  | -40 to 85<br>-40 to 125<br>-40 to 125 | °C<br>°C<br>°C |
| $\theta_{\sf JA}$ | Thermal Resistance:                                                                                                          |                                       | °C/W           |
|                   | SC-70                                                                                                                        | 280                                   |                |
|                   | Micro8                                                                                                                       | 238                                   |                |
|                   | TSOP-5                                                                                                                       | 333                                   |                |
|                   | UDFN8 (1.2 mm x 1.8 mm x 0.5 mm)                                                                                             | 350                                   |                |
|                   | SOIC-8                                                                                                                       | 212                                   |                |
|                   | SOIC-14                                                                                                                      | 156                                   |                |
|                   | TSSOP-14                                                                                                                     | 190                                   |                |
| T <sub>stg</sub>  | Storage Temperature                                                                                                          | -65 to 150                            | °C             |
|                   | Mounting Temperature (Infrared or Convection –20 sec)                                                                        | 260                                   | °C             |
| V <sub>ESD</sub>  | ESD Tolerance (Note 3) LMV321, LMV3211, NCV321 Machine Model Human Body Model LMV358/358I/324 Machine Model Human Body Model | 100<br>1000<br>100<br>2000            | V              |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

<sup>1.</sup> Continuous short–circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability. Shorting output to either V+ or V- will adversely affect reliability.

<sup>2.</sup> NCV prefix is qualified for automotive usage.

Human Body Model, applicable std. MIL-STD-883, Method 3015.7
 Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC)
 Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

#### **2.7 V DC ELECTRICAL CHARACTERISTICS** (Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$ , $V^+ = 2.7$ V, $R_L = 1 M\Omega$ , $V^- = 0 V$ , $V_O = V+/2$ )

| Parameter                                                                                  | Symbol            | Condition                                                                             | Min                   | Тур                  | Max               | Unit  |
|--------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------|-----------------------|----------------------|-------------------|-------|
| Input Offset Voltage                                                                       | V <sub>IO</sub>   | $T_A = T_{Low}$ to $T_{High}$ (Note 4)                                                |                       | 1.7                  | 9                 | mV    |
| Input Offset Voltage Average Drift                                                         | ICV <sub>OS</sub> | $T_A = T_{Low}$ to $T_{High}$ (Note 4)                                                |                       | 5                    |                   | μV/°C |
| Input Bias Current                                                                         | Ι <sub>Β</sub>    | $T_A = T_{Low}$ to $T_{High}$ (Note 4)                                                |                       | <1                   |                   | nA    |
| Input Offset Current                                                                       | I <sub>IO</sub>   | $T_A = T_{Low}$ to $T_{High}$ (Note 4)                                                |                       | <1                   |                   | nA    |
| Common Mode Rejection Ratio                                                                | CMRR              | $0 \text{ V} \leq \text{V}_{\text{CM}} \leq 1.7 \text{ V}$                            | 50                    | 63                   |                   | dB    |
| Power Supply Rejection Ratio                                                               | PSRR              | $2.7 \text{ V} \le \text{V+} \le 5 \text{ V},$<br>$\text{V}_{\text{O}} = 1 \text{ V}$ | 50                    | 60                   |                   | dB    |
| Input Common-Mode Voltage Range                                                            | V <sub>CM</sub>   | For CMRR ≥ 50 dB                                                                      | 0 to 1.7              | -0.2 to 1.9          |                   | V     |
| Output Swing                                                                               | V <sub>OH</sub>   | $R_L$ = 10 kΩ to 1.35 V                                                               | V <sub>CC</sub> - 100 | V <sub>CC</sub> – 10 |                   | mV    |
|                                                                                            | V <sub>OL</sub>   | $R_L$ = 10 k $\Omega$ to 1.35 V (Note 5)                                              |                       | 60                   | 180               | mV    |
| Supply Current LMV321, NCV321<br>LMV358/LMV358I (Both Amplifiers)<br>LMV324 (4 Amplifiers) | I <sub>CC</sub>   |                                                                                       |                       | 80<br>140<br>260     | 185<br>340<br>680 | μΑ    |

#### 2.7 V AC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$ , $V^+ = 2.7$ V, $R_L=1~M\Omega,~V^-=0~V,~V_O=V+/2)$

| Parameter                    | Symbol         | Condition               | Min | Тур | Max | Unit               |
|------------------------------|----------------|-------------------------|-----|-----|-----|--------------------|
| Gain Bandwidth Product       | GBWP           | C <sub>L</sub> = 200 pF |     | 1   |     | MHz                |
| Phase Margin                 | $\Theta_{m}$   |                         |     | 60  |     | 0                  |
| Gain Margin                  | G <sub>m</sub> |                         |     | 10  |     | dB                 |
| Input-Referred Voltage Noise | e <sub>n</sub> | f = 50 kHz              |     | 50  |     | nV/√ <del>Hz</del> |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product For LMV321, LMV358, LMV324: T<sub>A</sub> = -40°C to +85°C
 Guaranteed by design and/or characterization.

**5.0 V DC ELECTRICAL CHARACTERISTICS** (Unless otherwise specified, all limits are guaranteed for  $T_A = 25^{\circ}C$ ,  $V^+ = 5.0$  V,  $R_L = 1 M\Omega$ ,  $V^- = 0 V$ ,  $V_O = V+/2$ )

| Parameter                          | Symbol          | Condition                                                                                                                  | Min                                            | Тур                  | Max         | Unit  |
|------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------|-------------|-------|
| Input Offset Voltage               | V <sub>IO</sub> | T <sub>A</sub> = T <sub>Low</sub> to T <sub>High</sub> (Note 6)                                                            |                                                | 1.7                  | 9           | mV    |
| Input Offset Voltage Average Drift | $T_CV_{IO}$     | $T_A = T_{Low}$ to $T_{High}$ (Note 6)                                                                                     |                                                | 5                    |             | μV/°C |
| Input Bias Current (Note 7)        | I <sub>B</sub>  | $T_A = T_{Low}$ to $T_{High}$ (Note 6)                                                                                     |                                                | < 1                  |             | nA    |
| Input Offset Current (Note 7)      | I <sub>IO</sub> | $T_A = T_{Low}$ to $T_{High}$ (Note 6)                                                                                     |                                                | < 1                  |             | nA    |
| Common Mode Rejection Ratio        | CMRR            | $0 \text{ V} \leq \text{V}_{\text{CM}} \leq 4 \text{ V}$                                                                   | 50                                             | 65                   |             | dB    |
| Power Supply Rejection Ratio       | PSRR            | $2.7 \text{ V} \le \text{V} + \le 5 \text{ V},$<br>$\text{V}_{\text{O}} = 1 \text{ V}, \text{V}_{\text{CM}} = 1 \text{ V}$ | 50                                             | 60                   |             | dB    |
| Input Common-Mode Voltage Range    | V <sub>CM</sub> | For CMRR ≥ 50 dB                                                                                                           | 0 to 4                                         | -0.2 to 4.2          |             | V     |
| Large Signal Voltage Gain (Note 7) | A <sub>V</sub>  | $R_L = 2 k\Omega$                                                                                                          | 15                                             | 100                  |             | V/mV  |
|                                    |                 | T <sub>A</sub> = T <sub>Low</sub> to T <sub>High</sub> (Note 6)                                                            | 10                                             |                      |             | 1     |
| Output Swing                       | V <sub>OH</sub> | $R_L = 2 k\Omega$ to 2.5 V<br>$T_A = T_{Low}$ to $T_{High}$ (Note 6)                                                       | V <sub>CC</sub> - 300<br>V <sub>CC</sub> - 400 | V <sub>CC</sub> - 40 |             | mV    |
|                                    | V <sub>OL</sub> | $R_L = 2 \text{ k}\Omega \text{ to } 2.5 \text{ V (Note 7)}$<br>$T_A = T_{Low} \text{ to } T_{High} \text{ (Note 6)}$      |                                                | 120                  | 300<br>400  | mV    |
|                                    | V <sub>OH</sub> | $R_L = 10 \text{ k}\Omega \text{ to } 2.5 \text{ V (Note 7)}$<br>$T_A = T_{Low} \text{ to } T_{High} \text{ (Note 6)}$     | V <sub>CC</sub> - 100<br>V <sub>CC</sub> - 200 |                      |             | mV    |
|                                    | V <sub>OL</sub> | $R_L$ = 10 k $\Omega$ to 2.5 V<br>$T_A$ = $T_{Low}$ to $T_{High}$ (Note 6)                                                 |                                                | 65                   | 180<br>280  | mV    |
| Output Short Circuit Current       | I <sub>O</sub>  | Sourcing = V <sub>O</sub> = 0 V (Note 7)<br>Sinking = V <sub>O</sub> = 5 V (Note 7)                                        | 10<br>10                                       | 60<br>160            |             | mA    |
| Supply Current                     | Icc             | LMV321 $T_{A} = T_{Low} \text{ to } T_{High} \text{ (Note 6)}$                                                             |                                                | 130                  | 250<br>350  | μΑ    |
|                                    |                 | NCV321 $T_A = T_{Low}$ to $T_{High}$ (Note 6)                                                                              |                                                | 130                  | 250<br>350  |       |
|                                    |                 | LMV358/358I Both Amplifiers<br>T <sub>A</sub> = T <sub>Low</sub> to T <sub>High</sub> (Note 6)                             |                                                | 210                  | 440<br>615  |       |
|                                    |                 | LMV324 All Four Amplifiers $T_A = T_{Low}$ to $T_{High}$ (Note 6)                                                          |                                                | 410                  | 830<br>1160 |       |

**5.0 V AC ELECTRICAL CHARACTERISTICS** (Unless otherwise specified, all limits are guaranteed for  $T_A = 25$ °C,  $V^+ = 5.0$  V,  $R_L=1~M\Omega,~V^-=0~V,~V_O=V+/2)$ 

| Parameter                    | Symbol         | Condition               | Min | Тур | Max | Unit               |
|------------------------------|----------------|-------------------------|-----|-----|-----|--------------------|
| Slew Rate                    | S <sub>R</sub> |                         |     | 1   |     | V/μs               |
| Gain Bandwidth Product       | GBWP           | C <sub>L</sub> = 200 pF |     | 1   |     | MHz                |
| Phase Margin                 | $\Theta_{m}$   |                         |     | 60  |     | ٥                  |
| Gain Margin                  | G <sub>m</sub> |                         |     | 10  |     | dB                 |
| Input-Referred Voltage Noise | e <sub>n</sub> | f = 50 kHz              |     | 50  |     | nV/√ <del>Hz</del> |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics for the listed test conditions.

6. For LMV321, LMV358, LMV324: T<sub>A</sub> = -40°C to +85°C

For LMV321I, LMV358I, NCV321: T<sub>A</sub> = -40°C to +125°C.

7. Guaranteed by design and/or characterization.

#### TYPICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ and } V_S = 5 \text{ V unless otherwise specified})$ 



170 150 130 PHASE MARGIN (°) 110 90 70 50 30 10 100 10k 100k 10M 10 1M FREQUENCY (Hz)

Figure 1. Open Loop Frequency Response  $(R_L = 2 k\Omega, T_A = 25^{\circ}C, V_S = 5 V)$ 

100

90

80 70

60

50

40

30

20

10

CMRR (dB)

10 100 1k 10k 100k

Figure 2. Open Loop Phase Margin  $(R_L = 2 k\Omega, T_A = 25^{\circ}C, V_S = 5 V)$ 



FREQUENCY (Hz) Figure 3. CMRR vs. Frequency





Figure 4. CMRR vs. Input Common Mode Voltage



Figure 5. CMRR vs. Input Common Mode Voltage

Figure 6. PSRR vs. Frequency  $(R_L = 5 k\Omega, V_S = 2.7 V, +PSRR)$ 

#### **TYPICAL CHARACTERISTICS**

 $(T_A = 25^{\circ}C \text{ and } V_S = 5 \text{ V unless otherwise specified})$ 



#### **TYPICAL CHARACTERISTICS**

 $(T_A = 25^{\circ}C \text{ and } V_S = 5 \text{ V unless otherwise specified})$ 



Figure 13. THD+N vs Frequency



Figure 15. Output Voltage Swing vs Supply Voltage (R<sub>L</sub> = 10k)



Voltage (R<sub>L</sub> = 10k)

V<sub>OUT</sub> REFERENCED TO V- (V) Figure 16. Sink Current vs. Output Voltage  $V_S = 2.7 V$ 



Figure 17. Sink Current vs. Output Voltage  $V_S = 5.0 V$ 



Figure 18. Source Current vs. Output Voltage  $V_{S} = 2.7 V$ 

### TYPICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ and } V_S = 5 \text{ V unless otherwise specified})$ 



Figure 19. Source Current vs. Output Voltage  $V_S = 5.0 \text{ V}$ 



Figure 20. Settling Time vs. Capacitive Load



Figure 21. Settling Time vs. Capacitive Load



Figure 22. Step Response - Small Signal



Figure 23. Step Response – Small Signal



Figure 24. Step Response - Large Signal

## **TYPICAL CHARACTERISTICS**

( $T_A = 25^{\circ}C$  and  $V_S = 5 V$  unless otherwise specified)



Figure 25. Step Response – Large Signal

#### **APPLICATIONS**



Figure 26. Voltage Reference



Figure 27. Wien Bridge Oscillator



Figure 28. Comparator with Hysteresis



Given:  $f_0$  = center frequency  $A(f_0)$  = gain at center frequency

Choose value 
$$f_0$$
,  $C$  
$$C$$
 
$$Then: R3 = \frac{Q}{\pi f_0 C}$$
 
$$R1 = \frac{R3}{2 \, A(f_0)}$$
 
$$R2 = \frac{R1 \, R3}{4 \, Q^2 \, R1 \, - \, R3}$$

For less than 10% error from operational amplifier, (( $Q_O f_O$ )/BW) < 0.1 where  $f_o$  and BW are expressed in Hz. If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Figure 29. Multiple Feedback Bandpass Filter

#### **ORDERING INFORMATION**

| Order Number  | Number<br>of<br>Channels | Specific Device Marking | Package Type          | Shipping <sup>†</sup> |
|---------------|--------------------------|-------------------------|-----------------------|-----------------------|
| LMV321SQ3T2G  | Single                   | AAC                     | SC-70<br>(Pb-Free)    | 3000 / Tape & Reel    |
| LMV321SN3T1G  | Single                   | ЗАС                     | TSOP-5<br>(Pb-Free)   | 3000 / Tape & Reel    |
| LMV321ISN3T1G | Single                   | заС                     | TSOP-5<br>(Pb-Free)   | 3000 / Tape & Reel    |
| NCV321SN3T1G* | Single                   | заС                     | TSOP-5<br>(Pb-Free)   | 3000 / Tape & Reel    |
| LMV358DMR2G   | Dual                     | V358                    | Micro8<br>(Pb-Free)   | 4000 / Tape & Reel    |
| LMV358MUTAG   | Dual                     | AC                      | UDFN8<br>(Pb-Free)    | 3000 / Tape & Reel    |
| LMV358DR2G    | Dual                     | V358                    | SOIC-8<br>(Pb-Free)   | 2500 / Tape & Reel    |
| LMV358IDR2G   | Dual                     | V358                    | SOIC-8<br>(Pb-Free)   | 2500 / Tape & Reel    |
| LMV324DR2G    | Quad                     | LMV324                  | SOIC-14<br>(Pb-Free)  | 2500 / Tape & Reel    |
| LMV324DTBR2G  | Quad                     | LMV<br>324              | TSSOP-14<br>(Pb-Free) | 2500 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
\*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP

Capable.



#### SC-88A (SC-70-5/SOT-353) CASE 419A-02 **ISSUE L**

**DATE 17 JAN 2013** 









#### **SOLDER FOOTPRINT**



#### NOTES:

- TES:
  DIMENSIONING AND TOLERANCING
  PER ANSI Y14.5M, 1982.
  CONTROLLING DIMENSION: INCH.
  419A-01 OBSOLETE. NEW STANDARD 3.
- 419A-02.
  DIMENSIONS A AND B DO NOT INCLUDE
  MOLD FLASH, PROTRUSIONS, OR GATE
  BURRS.

|     | INCHES    |       | MILLIN   | IETERS   |  |
|-----|-----------|-------|----------|----------|--|
| DIM | MIN       | MAX   | MIN      | MAX      |  |
| Α   | 0.071     | 0.087 | 1.80     | 2.20     |  |
| В   | 0.045     | 0.053 | 1.15     | 1.35     |  |
| C   | 0.031     | 0.043 | 0.80     | 1.10     |  |
| D   | 0.004     | 0.012 | 0.10     | 0.30     |  |
| G   | 0.026     | BSC   | 0.65     | 0.65 BSC |  |
| Н   |           | 0.004 |          | 0.10     |  |
| J   | 0.004     | 0.010 | 0.10     | 0.25     |  |
| K   | 0.004     | 0.012 | 0.10     | 0.30     |  |
| N   | 0.008 REF |       | 0.20 REF |          |  |
| S   | 0.079     | 0.087 | 2.00     | 2.20     |  |

#### **GENERIC MARKING DIAGRAM\***



XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

| STYLE 1:                    | STYLE 2:                    | STYLE 3:                    | STYLE 4:                   | STYLE 5:                       |
|-----------------------------|-----------------------------|-----------------------------|----------------------------|--------------------------------|
| PIN 1. BASE                 | PIN 1. ANODE                | PIN 1. ANODE 1              | PIN 1. SOURCE 1            | PIN 1. CATHODE                 |
| 2. EMITTER                  | 2. EMITTER                  | 2. N/C                      | 2. DRAIN 1/2               | <ol><li>COMMON ANODE</li></ol> |
| 3. BASE                     | 3. BASE                     | 3. ANODE 2                  | <ol><li>SOURCE 1</li></ol> | <ol><li>CATHODE 2</li></ol>    |
| 4. COLLECTOR                | <ol><li>COLLECTOR</li></ol> | <ol><li>CATHODE 2</li></ol> | 4. GATE 1                  | <ol><li>CATHODE 3</li></ol>    |
| <ol><li>COLLECTOR</li></ol> | <ol><li>CATHODE</li></ol>   | <ol><li>CATHODE 1</li></ol> | 5. GATE 2                  | <ol><li>CATHODE 4</li></ol>    |
|                             |                             |                             |                            |                                |

| 5. COLLECTOR                                                                        | 5. CATHODE                                                        | 5. CATHODE 1                                                   | 5. GATE 2                                                                  | 5. CATHODE 4                                                                                                                                                |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 5. COLLECTOR 2/BASE 1 | STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR | STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER | STYLE 9:<br>PIN 1. ANODE<br>2. CATHODE<br>3. ANODE<br>4. ANODE<br>5. ANODE | Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment. |

| DOCUMENT NUMBER: | 98ASB42984B            | Electronic versions are uncontrolled except when accessed directly from the Document Repos<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | SC-88A (SC-70-5/SOT-35 | 63)                                                                                                                                                                           | PAGE 1 OF 1 |  |

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



TSOP-5 **CASE 483 ISSUE N** 

**DATE 12 AUG 2020** 









#### NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
- CONTROLLING DIMENSION: MILLIMETERS.
  MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
  THICKNESS. MINIMUM LEAD THICKNESS IS THE
  MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. OPTIONAL CONSTRUCTION: AN ADDITIONAL
- TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

|     | MILLIMETERS |      |  |  |
|-----|-------------|------|--|--|
| DIM | MIN MAX     |      |  |  |
| Α   | 2.85        | 3.15 |  |  |
| В   | 1.35        | 1.65 |  |  |
| C   | 0.90        | 1.10 |  |  |
| D   | 0.25        | 0.50 |  |  |
| G   | 0.95        | BSC  |  |  |
| Н   | 0.01        | 0.10 |  |  |
| J   | 0.10        | 0.26 |  |  |
| K   | 0.20        | 0.60 |  |  |
| М   | 0 °         | 10 ° |  |  |
| S   | 2.50        | 3.00 |  |  |

#### **SOLDERING FOOTPRINT\***



<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### **GENERIC MARKING DIAGRAM\***





XXX = Specific Device Code XXX = Specific Device Code

= Assembly Location = Date Code

= Year = Pb-Free Package

= Work Week W

= Pb-Free Package

(Note: Microdot may be in either location)

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

| DOCUMENT NUMBER: 98ARB18753C |        | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:                 | TSOP-5 |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SCALE 4:1



**DATE 08 NOV 2006** 









#### **MOUNTING FOOTPRINT SOLDERMASK DEFINED**



**DIMENSIONS: MILLIMETERS** 

- NOTES:
  1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
  CONTROLLING DIMENSION: MILLIMETERS.
  DIMENSION & APPLIES TO PLATED
- DIMENSION b APPLIES TO PLATED
  TERMINAL AND IS MEASURED BETWEEN
  0.15 AND 0.30 mm FROM TERMINAL TIP.
  MOLD FLASH ALLOWED ON TERMINALS
  ALONG EDGE OF PACKAGE. FLASH MAY
  NOT EXCEED 0.03 ONTO BOTTOM
  SURFACE OF TERMINALS.
  DETAIL A SHOWS OPTIONAL
  CONSTRUCTION FOR TERMINALS.

|   |     | MILLIMETERS |      |  |  |
|---|-----|-------------|------|--|--|
|   | DIM | MIN         | MAX  |  |  |
|   | Α   | 0.45        | 0.55 |  |  |
|   | A1  | 0.00        | 0.05 |  |  |
|   | АЗ  | 0.127       | REF  |  |  |
|   | b   | 0.15        | 0.25 |  |  |
|   | b2  | 0.30 REF    |      |  |  |
|   | D   | 1.80 BSC    |      |  |  |
|   | Е   | 1.20        | BSC  |  |  |
|   | е   | 0.40        | BSC  |  |  |
|   | L   | 0.45        | 0.55 |  |  |
|   | L1  | 0.00        | 0.03 |  |  |
| 1 | L2  | 0.40 REF    |      |  |  |

#### **GENERIC MARKING DIAGRAM\***



XX = Specific Device Code

= Date Code

= Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

| DOCUMENT NUMBER: | 98AON23417D         | Electronic versions are uncontrolled except when accessed directly from the Document Re-<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | UDFN8 1.8X1.2. 0.4P | •                                                                                                                                                                           | PAGE 1 OF 1 |

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



SOIC-8 NB CASE 751-07 **ISSUE AK** 

**DATE 16 FEB 2011** 



- NOTES:
  1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

|     | MILLIMETERS |       | INC       | HES   |
|-----|-------------|-------|-----------|-------|
| DIM | MIN         | MAX   | MIN       | MAX   |
| Α   | 4.80        | 5.00  | 0.189     | 0.197 |
| В   | 3.80        | 4.00  | 0.150     | 0.157 |
| С   | 1.35        | 1.75  | 0.053     | 0.069 |
| D   | 0.33        | 0.51  | 0.013     | 0.020 |
| G   | 1.27        | 7 BSC | 0.050 BSC |       |
| Н   | 0.10        | 0.25  | 0.004     | 0.010 |
| J   | 0.19        | 0.25  | 0.007     | 0.010 |
| K   | 0.40        | 1.27  | 0.016     | 0.050 |
| М   | 0 °         | 8 °   | 0 °       | 8 °   |
| N   | 0.25        | 0.50  | 0.010     | 0.020 |
| S   | 5.80        | 6.20  | 0.228     | 0.244 |

### **SOLDERING FOOTPRINT\***



<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### **GENERIC MARKING DIAGRAM\***



XXXXX = Specific Device Code = Assembly Location = Wafer Lot

= Year = Work Week = Pb-Free Package XXXXXX AYWW AYWW H  $\mathbb{H}$ Discrete **Discrete** (Pb-Free)

XXXXXX = Specific Device Code = Assembly Location Α

= Year ww = Work Week

= Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

#### **STYLES ON PAGE 2**

| DOCUMENT NUMBER: | UMENT NUMBER: 98ASB42564B Electronic versions are uncontrolled except when accessed directly from the Docume Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in re- |  |             |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------|
| DESCRIPTION:     | SOIC-8 NB                                                                                                                                                                                   |  | PAGE 1 OF 2 |

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

### SOIC-8 NB CASE 751-07 ISSUE AK

# DATE 16 FEB 2011

| STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER                                                                 | STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1               | STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1                            |                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE                                                                               | STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE                                                                    | STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd                    | STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1                              |
| STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON | STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE              | STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1                                               | STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN                                                                                 |
| STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN                                                                              | STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN                                                     | 8. DHAIN 1  STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON   | STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 |
| STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC                                                                                          | STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE                                                                 | STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1                                             | STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN                                                                   |
| 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6                   | STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND | STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT | 0 COLLECTOR/ANODE                                                                                                                                                       |
| STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT                                                                                         | STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC                                                                    | STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN                                                            | STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN                                                                        |
| STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1                        | STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1                           |                                                                                                                                                     |                                                                                                                                                                         |
|                                                                                                                                                                    |                                                                                                                                                           |                                                                                                                                                     |                                                                                                                                                                         |

| DOCUMENT NUMBER: | MBER: 98ASB42564B Electronic Versions are uncontrolled except when starr |  | ' '         |
|------------------|--------------------------------------------------------------------------|--|-------------|
| DESCRIPTION:     | SOIC-8 NB                                                                |  | PAGE 2 OF 2 |

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



0.10

SOIC-14 NB CASE 751A-03 ISSUE L

**DATE 03 FEB 2016** 









- NOTES:
  1. DIMENSIONING AND TOLERANCING PER
  - ASME Y14.5M, 1994.
    CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT
- MAXIMUM MATERIAL CONDITION.
  DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE

|     | MILLIN | IETERS | INC   | HES   |
|-----|--------|--------|-------|-------|
| DIM | MIN    | MAX    | MIN   | MAX   |
| Α   | 1.35   | 1.75   | 0.054 | 0.068 |
| A1  | 0.10   | 0.25   | 0.004 | 0.010 |
| АЗ  | 0.19   | 0.25   | 0.008 | 0.010 |
| b   | 0.35   | 0.49   | 0.014 | 0.019 |
| D   | 8.55   | 8.75   | 0.337 | 0.344 |
| Е   | 3.80   | 4.00   | 0.150 | 0.157 |
| е   | 1.27   | BSC    | 0.050 | BSC   |
| Н   | 5.80   | 6.20   | 0.228 | 0.244 |
| h   | 0.25   | 0.50   | 0.010 | 0.019 |
| Ĺ   | 0.40   | 1.25   | 0.016 | 0.049 |
| М   | 0 °    | 7°     | 0 °   | 7°    |

#### **GENERIC MARKING DIAGRAM\***



XXXXX = Specific Device Code Α = Assembly Location

WL = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator. "G" or microdot " ■". may or may not be present.

# **SOLDERING FOOTPRINT\***

| 1        | 14X<br>1.18   |
|----------|---------------|
|          |               |
| <u> </u> | 1.27<br>PITCH |
| 0.58 J   |               |
|          |               |

**DIMENSIONS: MILLIMETERS** 

#### **STYLES ON PAGE 2**

| DOCUMENT NUMBER: 98ASB42565B Electronic versions are uncontrolled except when accessed directly Printed versions are uncontrolled except when stamped "CONTROL |            |  |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|-------------|
| DESCRIPTION:                                                                                                                                                   | SOIC-14 NB |  | PAGE 1 OF 2 |

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### SOIC-14 CASE 751A-03 ISSUE L

## DATE 03 FEB 2016

| STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 2:<br>CANCELLED                                                                                                                                         | STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE                                                                | STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE | STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE | STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE |

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repos<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | SOIC-14 NB  |                                                                                                                                                                               | PAGE 2 OF 2 |

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



#### Micro8 CASE 846A-02 ISSUE K

**DATE 16 JUL 2020** 







#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10 mm IN EXCESS OF MAXIMUM MATERIAL CONDITION.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. DIMENSIONS D AND E ARE DETERMINED AT DATUM F.
- 5. DATUMS A AND B ARE TO BE DETERMINED AT DATUM F.
- 6. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.



MOUNTING FOOTPRINT

| DIM   | MILLIMETERS |      |      |  |  |
|-------|-------------|------|------|--|--|
| ויונע | MIN.        | N□M. | MAX. |  |  |
| Α     |             |      | 1.10 |  |  |
| A1    | 0.05        | 0.08 | 0.15 |  |  |
| b     | 0.25        | 0.33 | 0.40 |  |  |
| С     | 0.13        | 0.18 | 0.23 |  |  |
| D     | 2.90        | 3.00 | 3.10 |  |  |
| E     | 2.90        | 3.00 | 3.10 |  |  |
| е     | 0.65 BSC    |      |      |  |  |
| HE    | 4.75        | 4.90 | 5.05 |  |  |
| L     | 0.40        | 0.55 | 0.70 |  |  |

# GENERIC MARKING DIAGRAM\*



XXXX = Specific Device Code A = Assembly Location

Y = Year W = Work Week • = Pb-Free Package

(Note: Microdot may be in either location)

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

| STYLE 1:                 | STYLE 2:        | STYLE 3:                   |
|--------------------------|-----------------|----------------------------|
| PIN 1. SOURCE            | PIN 1. SOURCE 1 | PIN 1. N-SOURCE            |
| <ol><li>SOURCE</li></ol> | 2. GATE 1       | 2. N-GATE                  |
| <ol><li>SOURCE</li></ol> | 3. SOURCE 2     | <ol><li>P-SOURCE</li></ol> |
| <ol><li>GATE</li></ol>   | 4. GATE 2       | 4. P-GATE                  |
| <ol><li>DRAIN</li></ol>  | 5. DRAIN 2      | 5. P-DRAIN                 |
| <ol><li>DRAIN</li></ol>  | 6. DRAIN 2      | 6. P-DRAIN                 |
| 7. DRAIN                 | 7. DRAIN 1      | 7. N-DRAIN                 |
| 8. DRAIN                 | 8. DRAIN 1      | 8. N-DRAIN                 |

| DOCUMENT NUMBER: | 98ASB14087C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | MICRO8      |                                                                                                                                                                                     | PAGE 1 OF 1 |

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



**DATE 17 FEB 2016** 

- NOTES.

  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

  2. CONTROLLING DIMENSION: MILLIMETER.

  3. DIMENSION A DOES NOT INCLUDE MOLD
- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
  DIMENSION B DOES NOT INCLUDE
- INTERLEAD FLASH OR PROTRUSION.
  INTERLEAD FLASH OR PROTRUSION SHALL
- INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

  5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

  6. TERMINAL NUMBERS ARE SHOWN FOR DEFERENCE ONLY
- REFERENCE ONLY.
  DIMENSION A AND B ARE TO BE
  DETERMINED AT DATUM PLANE -W-.

|     | MILLIMETERS |          | INCHES |           |  |
|-----|-------------|----------|--------|-----------|--|
| DIM | MIN         | MAX      | MIN    | MAX       |  |
| Α   | 4.90        | 5.10     | 0.193  | 0.200     |  |
| В   | 4.30        | 4.50     | 0.169  | 0.177     |  |
| С   |             | 1.20     |        | 0.047     |  |
| D   | 0.05        | 0.15     | 0.002  | 0.006     |  |
| F   | 0.50        | 0.75     | 0.020  | 0.030     |  |
| G   | 0.65        | 0.65 BSC |        | 0.026 BSC |  |
| Н   | 0.50        | 0.60     | 0.020  | 0.024     |  |
| J   | 0.09        | 0.20     | 0.004  | 0.008     |  |
| J1  | 0.09        | 0.16     | 0.004  | 0.006     |  |
| K   | 0.19        | 0.30     | 0.007  | 0.012     |  |
| K1  | 0.19        | 0.25     | 0.007  | 0.010     |  |
| L   | 6.40        | 6.40 BSC |        | BSC       |  |
| М   | 0 °         | 8 °      | o °    | a °       |  |

#### **GENERIC MARKING DIAGRAM\***





= Assembly Location

= Wafer Lot

= Year W = Work Week

= Pb-Free Package (Note: Microdot may be in either location)

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | TSSOP-14 WB |                                                                                                                                                                                     | PAGE 1 OF 1 |

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

NCV33072ADR2G LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD#PBF ADA4523-1BCPZ-RL7 NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7