Single, Dual, Quad Low-Voltage, Rail-to-Rail Operational Amplifiers

LMV321, NCV321, LMV358, LMV324

The LMV321, LMV321I, NCV321, LMV358/LMV358I and LMV324 are CMOS single, dual, and quad low voltage operational amplifiers with rail-to-rail output swing. These amplifiers are a cost-effective solution for applications where low power consumption and space saving packages are critical. Specification tables are provided for operation from power supply voltages at 2.7 V and 5 V . Rail-to-Rail operation provides improved signal-to-noise preformance. Ultra low quiescent current makes this series of amplifiers ideal for portable, battery operated equipment. The common mode input range includes ground making the device useful for low-side current-shunt measurements. The ultra small packages allow for placement on the PCB in close proximity to the signal source thereby reducing noise pickup.

Features

- Operation from 2.7 V to 5.0 V Single-Sided Power Supply
- LMV321 Single Available in Ultra Small 5 Pin SC70 Package
- No Output Crossover Distortion
- Rail-to-Rail Output
- Low Quiescent Current: LMV358 Dual - $220 \mu \mathrm{~A}$, Max per Channel
- No Output Phase-Reversal from Overdriven Input
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Notebook Computers and PDA's
- Portable Battery-Operated Instruments
- Active Filters

ON Semiconductor ${ }^{\text {® }}$

www.onsemi.com

ORDERING AND MARKING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.

LMV321, NCV321, LMV358, LMV324

PIN CONNECTIONS

LMV321, NCV321, LMV358, LMV324

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V_{S}	Supply Voltage (Operating Range $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$ to 5.5 V)	5.5	V
$\mathrm{V}_{\text {IDR }}$	Input Differential Voltage	\pm Supply Voltage	V
$V_{\text {ICR }}$	Input Common Mode Voltage Range	-0.5 to (V+) + 0.5	V
	Maximum Input Current	10	mA
tso	Output Short Circuit (Note 1)	Continuous	
T_{J}	Maximum Junction Temperature	150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating Ambient Temperature Range LMV321, LMV358, LMV324 LMV321I, LMV358I NCV321 (Note 2)	$\begin{aligned} & -40 \text { to } 85 \\ & -40 \text { to } 125 \\ & -40 \text { to } 125 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
$\theta_{\text {JA }}$	Thermal Resistance:		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	SC-70	280	
	Micro8	238	
	TSOP-5	333	
	UDFN8 ($1.2 \mathrm{~mm} \times 1.8 \mathrm{~mm} \times 0.5 \mathrm{~mm}$)	350	
	SOIC-8	212	
	SOIC-14	156	
	TSSOP-14	190	
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
	Mounting Temperature (Infrared or Convection -20 sec)	260	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD Tolerance (Note 3) LMV321, LMV321I, NCV321 Machine Model Human Body Model LMV358/3581/324 Machine Model Human Body Mode	$\begin{gathered} 100 \\ 1000 \\ 100 \\ 2000 \end{gathered}$	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Continuous short-circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of 45 mA over long term may adversely affect reliability. Shorting output to either V+ or V - will adversely affect reliability.
2. NCV prefix is qualified for automotive usage.
3. Human Body Model, applicable std. MIL-STD-883, Method 3015.7

Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC)
Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

LMV321, NCV321, LMV358, LMV324

2.7 V DC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}$,
$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$)

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Input Offset Voltage	V_{10}	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }}$ to $\mathrm{T}_{\text {High }}$ (Note 4)		1.7	9	mV
Input Offset Voltage Average Drift	$\mathrm{ICV}_{\text {OS }}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }}$ to $\mathrm{T}_{\text {High }}$ (Note 4)		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	I_{B}	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }}$ to $\mathrm{T}_{\text {High }}$ (Note 4)		<1		nA
Input Offset Current	I_{10}	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }}$ to $\mathrm{T}_{\text {High }}$ (Note 4)		<1		nA
Common Mode Rejection Ratio	CMRR	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 1.7 \mathrm{~V}$	50	63		dB
Power Supply Rejection Ratio	PSRR	$\begin{gathered} 2.7 \mathrm{~V}_{\leq} \leq \mathrm{V}_{+} \leq 5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \end{gathered}$	50	60		dB
Input Common-Mode Voltage Range	V_{CM}	For CMRR $\geq 50 \mathrm{~dB}$	0 to 1.7	-0.2 to 1.9		V
Output Swing	V_{OH}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 1.35 V	$\mathrm{V}_{\text {cc }}-100$	$\mathrm{V}_{C C}-10$		mV
	$\mathrm{V}_{\text {OL }}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 1.35 V (Note 5)		60	180	mV
Supply Current LMV321, NCV321 LMV358/LMV358I (Both Amplifiers) LMV324 (4 Amplifiers)	Icc			$\begin{gathered} \hline 80 \\ 140 \\ 260 \end{gathered}$	$\begin{aligned} & \hline 185 \\ & 340 \\ & 680 \end{aligned}$	$\mu \mathrm{A}$

2.7 V AC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}$,
$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$)

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Gain Bandwidth Product	GBWP	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$		1		MHz
Phase Margin	Θ_{m}			60		\circ
Gain Margin	G_{m}			10		dB
Input-Referred Voltage Noise	e_{n}	$\mathrm{f}=50 \mathrm{kHz}$		50		$\mathrm{nV} / \mathrm{VHz}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. For LMV321, LMV358, LMV324: $\mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

For LMV321I, LMV358I, NCV321: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
5. Guaranteed by design and/or characterization.
5.0 V DC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$)

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Input Offset Voltage	V_{10}	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }}$ to $\mathrm{T}_{\text {High }}$ (Note 6)		1.7	9	mV
Input Offset Voltage Average Drift	$\mathrm{T}_{\mathrm{C}} \mathrm{V}_{10}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }}$ to $\mathrm{T}_{\text {High }}$ (Note 6)		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current (Note 7)	I_{B}	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }}$ to $\mathrm{T}_{\text {High }}$ (Note 6)		<1		nA
Input Offset Current (Note 7)	I_{10}	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }}$ to $\mathrm{T}_{\text {High }}$ (Note 6)		<1		nA
Common Mode Rejection Ratio	CMRR	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 4 \mathrm{~V}$	50	65		dB
Power Supply Rejection Ratio	PSRR	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{+} \leq 5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V} \end{aligned}$	50	60		dB
Input Common-Mode Voltage Range	V_{CM}	For CMRR $\geq 50 \mathrm{~dB}$	0 to 4	-0.2 to 4.2		V
Large Signal Voltage Gain (Note 7)	A_{V}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	15	100		V / mV
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }}$ to $\mathrm{T}_{\text {High }}$ (Note 6)	10			
Output Swing	V_{OH}	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }} \text { to } \mathrm{T}_{\text {High }}(\text { Note } 6) \end{gathered}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{Cc}}-300 \\ & \mathrm{~V}_{\mathrm{Cc}}-400 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}-40$		mV
	$\mathrm{V}_{\text {OL }}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 2.5 V (Note 7) $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }}$ to $\mathrm{T}_{\text {High }}($ Note 6)		120	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	mV
	V_{OH}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V}(\text { Note } 7) \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{Low}} \text { to } \mathrm{T}_{\text {High }} \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{C C}-100 \\ & \mathrm{~V}_{\mathrm{CC}}-200 \end{aligned}$			mV
	VoL	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }} \text { to } \mathrm{T}_{\text {High }}(\text { Note } 6) \end{gathered}$		65	$\begin{aligned} & \hline 180 \\ & 280 \end{aligned}$	mV
Output Short Circuit Current	10	Sourcing $=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ (Note 7) Sind Sinking $=\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$ (Note 7)	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{gathered} \hline 60 \\ 160 \end{gathered}$		mA
Supply Current	$I_{\text {cc }}$	$\begin{gathered} \text { LMV321 } \\ \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }} \text { to } \mathrm{T}_{\text {High }} \text { (Note 6) } \end{gathered}$		130	$\begin{aligned} & 250 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$
		$\begin{gathered} \text { NCV321 } \\ \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }} \text { to } \mathrm{T}_{\text {High }} \text { (Note 6) } \end{gathered}$		130	$\begin{aligned} & 250 \\ & 350 \end{aligned}$	
		LMV358/3581 Both Amplifiers $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }}$ to $\mathrm{T}_{\text {High }}$ (Note 6)		210	$\begin{aligned} & \hline 440 \\ & 615 \end{aligned}$	
		LMV324 All Four Amplifiers $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }}$ to $\mathrm{T}_{\text {High }}$ (Note 6)		410	$\begin{aligned} & \hline 830 \\ & 1160 \end{aligned}$	

5.0 V AC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$)

Parameter	Symbol	Condition	Min	Typ	Max
Slew Rate	S_{R}			1	
Gain Bandwidth Product	GBWP	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	$\mathrm{V} / \mu \mathrm{s}$		
Phase Margin	Θ_{m}			1	
Gain Margin	G_{m}			60	
Input-Referred Voltage Noise	e_{n}	$\mathrm{f}=50 \mathrm{kHz}$		10	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
6. For LMV321, LMV358, LMV324: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

For LMV3211, LMV358I, NCV321: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
7. Guaranteed by design and/or characterization.

LMV321, NCV321, LMV358, LMV324
 TYPICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ unless otherwise specified)

Figure 1. Open Loop Frequency Response $\left(R_{L}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}\right)$

Figure 3. CMRR vs. Frequency
$\left(R_{L}=5 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}\right)$

Figure 5. CMRR vs. Input Common Mode Voltage

Figure 2. Open Loop Phase Margin $\left(R_{L}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}\right)$

Figure 4. CMRR vs. Input Common Mode Voltage

Figure 6. PSRR vs. Frequency ($\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V},+\mathrm{PSRR}$)

LMV321, NCV321, LMV358, LMV324
 TYPICAL CHARACTERISTICS
 ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ unless otherwise specified)

Figure 7. PSRR vs. Frequency ($\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$, -PSRR)

Figure 9. PSRR vs. Frequency
($\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V},-\mathrm{PSRR}$)

Figure 11. V_{OS} vs CMR

Figure 8. PSRR vs. Frequency
($\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, +PSRR)

Figure 10. V ${ }_{\text {os }}$ vs CMR

Figure 12. Supply Current vs. Supply Voltage

LMV321, NCV321, LMV358, LMV324

TYPICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ unless otherwise specified)

Figure 13. THD+N vs Frequency

Figure 15. Output Voltage Swing vs Supply Voltage ($\left.R_{L}=10 k\right)$

Figure 17. Sink Current vs. Output Voltage
$\mathrm{V}_{\mathrm{S}}=5.0 \mathrm{~V}$

Figure 14. Output Voltage Swing vs Supply Voltage ($\left.R_{L}=10 k\right)$

Figure 16. Sink Current vs. Output Voltage $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$

Figure 18. Source Current vs. Output Voltage $V_{S}=2.7 \mathrm{~V}$

LMV321, NCV321, LMV358, LMV324

TYPICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ unless otherwise specified)

Figure 19. Source Current vs. Output Voltage $\mathrm{V}_{\mathrm{S}}=5.0 \mathrm{~V}$

Figure 21. Settling Time vs. Capacitive Load

Figure 23. Step Response - Small Signal

Figure 20. Settling Time vs. Capacitive Load

Figure 22. Step Response - Small Signal

Figure 24. Step Response - Large Signal

LMV321, NCV321, LMV358, LMV324

TYPICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ unless otherwise specified)

Figure 25. Step Response - Large Signal

LMV321, NCV321, LMV358, LMV324

APPLICATIONS

Figure 26. Voltage Reference

Figure 28. Comparator with Hysteresis

Figure 27. Wien Bridge Oscillator

Given: $f_{0}=$ center frequency

$$
A\left(f_{0}\right)=\text { gain at center frequency }
$$

Choose value $\mathrm{f}_{0}, \mathrm{C}_{\mathrm{Q}}$
Then: $R 3=\frac{Q}{\pi f_{O} C}$

$$
\mathrm{R} 1=\frac{\mathrm{R} 3}{2 \mathrm{~A}\left(\mathrm{f}_{\mathrm{O}}\right)}
$$

$$
R 2=\frac{R 1 R 3}{4 Q^{2} R 1-R 3}
$$

For less than 10% error from operational amplifier, $\left(\left(Q_{\mathrm{O}} \mathrm{f}_{\mathrm{O}}\right) / \mathrm{BW}\right)<0.1$ where f_{o} and BW are expressed in Hz . If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Figure 29. Multiple Feedback Bandpass Filter

ORDERING INFORMATION

Order Number	Number of Channels	Specific Device Marking	Package Type	Shipping ${ }^{\dagger}$
LMV321SQ3T2G	Single	AAC	$\begin{gathered} \text { SC-70 } \\ \text { (Pb-Free) } \end{gathered}$	3000 / Tape \& Reel
LMV321SN3T1G	Single	3AC	$\begin{gathered} \hline \text { TSOP-5 } \\ \text { (Pb-Free) } \end{gathered}$	3000 / Tape \& Reel
LMV321ISN3T1G	Single	3AC	$\begin{gathered} \hline \text { TSOP-5 } \\ \text { (Pb-Free) } \end{gathered}$	3000 / Tape \& Reel
NCV321SN3T1G*	Single	3AC	$\begin{gathered} \text { TSOP-5 } \\ \text { (Pb-Free) } \end{gathered}$	3000 / Tape \& Reel
LMV358DMR2G	Dual	V358	$\begin{gathered} \text { Micro8 } \\ \text { (Pb-Free) } \end{gathered}$	4000 / Tape \& Reel
LMV358MUTAG	Dual	AC	UDFN8 ($\mathrm{Pb}-\mathrm{Free}$)	3000 / Tape \& Reel
LMV358DR2G	Dual	V358	$\begin{gathered} \hline \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
LMV358IDR2G	Dual	V358	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
LMV324DR2G	Quad	LMV324	$\begin{gathered} \text { SOIC-14 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
LMV324DTBR2G	Quad	$\begin{gathered} \hline \text { LMV } \\ 324 \end{gathered}$	$\begin{aligned} & \hline \text { TSSOP-14 } \\ & \text { (Pb-Free) } \end{aligned}$	2500 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	
G	0.026 BSC		0.65	

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.

```
```

STYLE 1:

```
```

STYLE 1:
STYLE 1:
STYLE 1:
2. EMITTER
2. EMITTER
3. BASE
3. BASE
4. COLLECTOR
4. COLLECTOR
5. COLLECTOR

```
```

 5. COLLECTOR
    ```
```

```
STYLE 2:
    PIN 1. ANODE
    2. EMITTER
    STYLE 3
```

STYLE 6:
PIN 1. EMITTER 2
2. BASE 2
3. EMITTER 1
4. COLLECTOR
5. COLLECTOR 2/BASE

STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 3
PIN 1. ANODE
2. N/C
3. ANODE 2
4. CATHODE 2
5. CATHODE

STYLE 8

PIN 1. CATHODE
2. COLLECTOR
3. N / C
4. BASE
5. EMITTER

SOLDER FOOTPRINT

STYLE 4:
PIN 1. SOURCE 1
2. DRAIN $1 / 2$
3. SOURCE 1
4. GATE 1
5. GATE 2

STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE

STYLE 5:

PIN 1. CATHODE
2. COMMON ANODE
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42984B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88A (SC-70-5/SOT-353) | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSOP-5
CASE 483
ISSUE N
DATE 12 AUG 2020
SCALE 2:1
 Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ARB18753C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSOP-5 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

UDFN8 1.8x1.2, 0.4P CASE 517AJ-01

ISSUE O
DATE 08 NOV 2006
SCALE 4:1

MOUNTING FOOTPRINT

SOLDERMASK DEFINED

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP.
4. MOLD FLASH ALOWED ON TERMINAL
5. ALONG EDGE OF PACKAGE. FLASH MAY ALONG EDCED O.O3 ONTO BOTTOM NOT EXCEED 0.03 ONTO B
6. DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS.

| | MILLIMETERS | |
| :---: | :---: | :---: |
| DIM | MIN | MAX |
| A | 0.45 | 0.55 |
| A1 | 0.00 | 0.05 |
| A3 | 0.127 | REF |
| b | 0.15 | |
| | 0.25 | |
| b2 | 0.30 REF | |
| D | 1.80 BSC | |
| E | 1.20 BSC | |
| e | 0.40 BSC | |
| L | 0.45 | 0.55 |
| L1 | 0.00 | 0.03 |
| L2 | 0.40 REF | |

GENERIC MARKING DIAGRAM*

| XXM | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$$
\begin{array}{ll}
\text { XX } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Code } \\
\text { - } & =\text { Pb-Free Package }
\end{array}
$$

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98AON23417D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN8 1.8X1.2, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

| DIM | MILLIMETERS | | INCHES | |
| :---: | :---: | :---: | :---: | :---: |
| | MIN | MAX | MIN | MAX |
| | 4.80 | 5.00 | 0.189 | 0.197 |
| B | 3.80 | 4.00 | 0.150 | 0.157 |
| C | 1.35 | 1.75 | 0.053 | 0.069 |
| D | 0.33 | 0.51 | 0.013 | 0.020 |
| G | 1.27 BSC | | 0.050 BSC | |
| H | 0.10 | 0.25 | 0.004 | 0.010 |
| J | 0.19 | 0.25 | 0.007 | 0.010 |
| K | 0.40 | 1.27 | 0.016 | 0.050 |
| M | 0 | 0° | 8° | 0 |
| | \circ | 8 | | |
| N | 0.25 | 0.50 | 0.010 | 0.020 |
| S | 5.80 | 6.20 | 0.228 | 0.244 |

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

| PIN 1. | EMITTER |
| ---: | :--- |
| 2. | COLLECTOR |
| 3. | COLLECTOR |
| 4. | EMITTER |
| 5. | EMITTER |
| 6. | BASE |
| 7. | BASE |
| 8. | EMITTER |
| STYLE 5: | |
| PIN 1. | DRAIN |
| 2. | DRAIN |
| 3. | DRAIN |
| 4. | DRAIN |
| 5. | GATE |
| 6. | GATE |
| 7. | SOURCE |
| 8. | SOURCE |

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| :---: | :---: | :---: |
| DESCRIPTION: | SOIC-8 NB | PAGE 2 OF 2 |

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

SOIC-14 NB
CASE 751A-03
ISSUE L
SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE

MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

| DIM | MILLIMETERS | | INCHES | |
| :---: | :---: | :---: | :---: | :---: |
| | MIN | MAX | MIN | MAX |
| | 1.35 | 1.75 | 0.054 | 0.068 |
| A1 | 0.10 | 0.25 | 0.004 | 0.010 |
| A3 | 0.19 | 0.25 | 0.008 | 0.010 |
| b | 0.35 | 0.49 | 0.014 | 0.019 |
| D | 8.55 | 8.75 | 0.337 | 0.344 |
| E | 3.80 | 4.00 | 0.150 | 0.157 |
| e | 1.27 | BSC | 0.050 | BSC |
| H | 5.80 | 6.20 | 0.228 | 0.244 |
| h | 0.25 | 0.50 | 0.010 | 0.019 |
| L | 0.40 | 1.25 | 0.016 | 0.049 |
| M | 0° | 7° | 0° | 7° |

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE 1 OF 2 |

[^1] rights of others

STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
4. COMMON ANODE
STYLE $5:$

PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHOD
4. ANODE/CATHOD
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHOD
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 2 :
CANCELLED

STYLE 3:
PIN 1. NO CONNECTION 2. ANODE 3. ANODE
4. NO CONNECTION 5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE

STYLE 6

PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
5. CATHODE
6. CATHODE
7. CATHOD
8. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE

STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE
11. COMMON CATHOD
13. ANODE/CATHODE
14. ANODE/CATHODE

STYLE 4:
PIN 1. NO CONNECTION 2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
11. NO CONNECTION
12. ANODE/CATHODE
12. ANODE/CATHODE
13. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red |
| :---: | :---: | :---: |
| DESCRIPTION: | SOIC-14 NB | |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

Micro8
CASE 846A-02
ISSUE K
DATE 16 JUL 2020
SCALE 2:1

NDTES:

1. DIMENSIZNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CINTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIUN b DDES NDT INCLUDE DAMBAR PRDTRUSIDN ALLIWABLE PRITRUSIDN SHALL BE 0.10 mm IN EXCESS DF MAXIMUM MATERIAL CINDITIDN.
4. DIMENSIDNS D AND E DI NDT INCLUDE MDLD FLASH, PRDTRUSID IR GATE BURRS, MLLD FLASH, PRDTRUSIUNS, IR GATE BURRS SHALL NDT EXCEED 0.15 mm PER SIDE. DIMENSIDN E DDES NDT INCLUDE INTERLEAD FLASH GR PRDTRUSIDN. INTERLEAD FLASH IR PRZTRUSIZN SHALL NDT EXCEED 0.25 mm PER SIDE. DIMENSIINS D AND E ARE DETERMINED AT DATUM F.
5. DATUMS A AND B ARE TV BE DETERMINED AT DATUM F
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FRIM THE SEATING PLANE Tロ THE LIWEST PGINT UN THE PACKAGE BUDY.
GENERIC MARKING DIAGRAM*

| XXXX | $=$ Specific Device Code |
| :--- | :--- |
| A | $=$ Assembly Location |
| Y | $=$ Year |
| W | $=$ Work Week |
| - | $=$ Pb-Free Package |

END VIEW
0.65

PITCH ${ }^{-}$
RECDMMENDED MDUNTING FADTPRINT

| DIM | MILLIMETERS | | |
| :---: | :---: | :---: | :---: |
| | MIN. | NDM. | MAX. |
| A | --- | --- | 1.10 |
| A1 | 0.05 | 0.08 | 0.15 |
| b | 0.25 | 0.33 | 0.40 |
| C | 0.13 | 0.18 | 0.23 |
| D | 2.90 | 3.00 | 3.10 |
| E | 2.90 | 3.00 | |
| e | 0.65 BSC | | |
| H_{E} | 4.75 | 4.90 | 5.05 |
| L | 0.40 | 0.55 | 0.70 |

$$
\begin{aligned}
& \text { Solderng an } \\
& \text { SLIDERRT/D. }
\end{aligned}
$$

STYLE 3:

| STYLE 1: | STYLE 2: |
| :---: | :---: |
| PIN 1. SOURCE | PIN 1. SOURCE 1 |
| 2. SOURCE | 2. GATE 1 |
| 3. SOURCE | 3. SOURCE 2 |
| 4. GATE | 4. GATE 2 |
| 5. DRAIN | 5. DRAIN 2 |
| 6. DRAIN | 6. DRAIN 2 |
| 7. DRAIN | 7. DRAIN 1 |
| 8. DRAIN | 8. DRAIN 1 |

PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE
3. P-GATE
4. P-GATE
5. P-DRAIN
5. P-DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " "", may or may not be present. Some products may not follow the Generic Marking

| DOCUMENT NUMBER: | 98ASB14087C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | MICRO8 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT MOLD FLASH OR GATE BURRS
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

| DIM | MILLIMETERS | | INCHES | |
| :---: | :---: | :---: | :---: | :---: |
| | MIN | MAX | MIN | MAX |
| A | 4.90 | 5.10 | 0.193 | 0.200 |
| B | 4.30 | 4.50 | 0.169 | 0.177 |
| C | --- | 1.20 | --- | 0.047 |
| D | 0.05 | 0.15 | 0.002 | 0.006 |
| F | 0.50 | 0.75 | 0.020 | 0.030 |
| G | 0.65 | BSC | 0.026 | |
| BSC | | | | |
| H | 0.50 | 0.60 | 0.020 | 0.024 |
| J | 0.09 | 0.20 | 0.004 | 0.008 |
| J1 | 0.09 | 0.16 | 0.004 | 0.006 |
| K | 0.19 | 0.30 | 0.007 | 0.012 |
| K1 | 0.19 | 0.25 | 0.007 | 0.010 |
| L | 6.40 | BSC | 0.252 | BSC |
| M | $0{ }^{\circ}$ | 8° | 0° | 8° |

GENERIC MARKING DIAGRAM*

| A | $=$ Assembly Location |
| :--- | :--- |
| L | $=$ Wafer Lot |
| Y | $=$ Year |
| W | $=$ Work Week |
| - | $=$ Pb-Free Package |

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \bullet ", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-14 WB | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
NCV33072ADR2G LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD\#PBF ADA4523-1BCPZ-RL7 NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

[^1]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

