LV0104CS

Ambient Light Sensor, $I^{2} \mathrm{C}$ Interface

Overview

LV0104CS is a Photo IC for ultra- small package Ambient Light sensor which has the characteristics of spectral response similar to that of human eyes. It is suitable for the applications like mobile phone (for Digital-TV, One-segment), LCD-TV, laptop computer, PDA, DSC and Camcorder.

Features

- Smallest OD-CSP package in the world
($1.08 \mathrm{~mm} \times 1.08 \mathrm{~mm}$, thickness : 0.6 mm)
- Great spectrum sensitivity characteristic
- 16-Bit Digital Output for I2C-BUS
- Low Current consumption, Integrated Sleep function

Typical Applications

- Mobile Phone (Digital-TV, One-segment)
- LCD-TV
- Laptop Computer
- PDA
- DSC
- Camcorder

SPECIFICATION

ABSOLUTE MAXIMUM RATINGS at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (Note 1)

Parameter	Symbol	Conditions	Ratings	Unit
Power Supply Voltage	V_{DD}		4.0	V
Logic I/O levels	$\mathrm{V}_{\text {IO }}$		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Operating temperature range	Topr	-30 to 85	${ }^{\circ} \mathrm{C}$	
Storage temperature range	Tstg	-40 to 100	${ }^{\circ} \mathrm{C}^{\mathrm{C}}$	

1. Stresses exceeding those listed in the Absolute Maximum Rating table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENED OPERATING CONDITIONS AND

OPERATING VOLTAGE RANGE at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (Note 2, 3)

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Recommended Supply Voltage	V_{DD} op		2.3	2.5	3.6	V
Input low level voltage	V_{I}	SCL, SDA			0.55	V
Input high level voltage	$\mathrm{V}_{\mathrm{I}} \mathrm{H}$	SCL, SDA, $\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}$	1.26			V
Output low level voltage	V_{OL}	SDA, IOL=3mA			0.4	V
Input leak current	ILEAK	SCL, SDA	-5		5	$\mu \mathrm{~A}$

2. Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
3. $I^{2} \mathrm{C}$ interface (SCL,SDA) is for $\mathrm{V}_{\mathrm{IO}}=1.8 \mathrm{~V}$ operation
${ }^{*} I^{2} \mathrm{C}$ Bus is a trademark of Philips Corporation.

LV0104CS

ELECTRICAL AND OPTICAL CHARACTERISTICS at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ (Note 4)

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply Current	IDD	Ev=0 lux		70	100	$\mu \mathrm{A}$
Sleep Current	ISLP	Sleep mode, Ev=0 lux			1	$\mu \mathrm{A}$
Internal Oscillator Frequency	$\mathrm{f}_{\text {OSC }}$			655		kHz
Dark ADC count value	D0	Ev=0 lux, High gain mode			5	counts
Full scale ADC count value	D max				65535	counts
ADC count value	Data HH	Gain $\times 8$ mode, Ev=10001x		8000		counts
	Data HM	Gain $\times 2$ mode, Ev=10001x		2000		counts
	Data N	Gain $\times 1$ mode, Ev=10001x	750	1000	1250	counts
	Data L	Gain $\times 0.25$ mode, Ev=10001x		250		counts
Resolution	ReHH1	Tint $=200 \mathrm{~ms}$, Gain $\times 8$ mode		0.125		lx
	ReHH2	Tint $=100 \mathrm{~ms}$, Gain $\times 8$ mode		0.25		Ix
	ReHH3	Tint $=12.5 \mathrm{~ms}$, Gain $\times 8$ mode		2		Ix
	ReHM1	Tint $=200 \mathrm{~ms}$, Gain $\times 2$ mode		0.5		Ix
	ReHM2	Tint $=100 \mathrm{~ms}$, Gain $\times 2$ mode		1		Ix
	ReHM3	Tint $=12.5 \mathrm{~ms}$, Gain $\times 2$ mode		8		Ix
	ReN1	Tint $=200 \mathrm{~ms}$, Gain $\times 1$ mode		1		Ix
	ReN2	Tint $=100 \mathrm{~ms}$, Gain $\times 1$ mode		2		Ix
	ReN3	Tint $=12.5 \mathrm{~ms}$, Gain $\times 1$ mode		16		Ix
	ReL1	Tint $=200 \mathrm{~ms}$, Gain $\times 0.25$ mode		4		Ix
	ReL2	Tint $=100 \mathrm{~ms}$, Gain $\times 0.25$ mode		8		Ix
	ReL3	Tint $=12.5 \mathrm{~ms}$, Gain $\times 0.25$ mode		64		Ix

4. Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PAD LAYOUT

No.	Name	Function
1	VDD	Supply voltage pin
2	GND	GND pin
3	SCL	$\mathrm{I}^{2} \mathrm{C}$ serial clock
4	SDA	$\mathrm{I}^{2} \mathrm{C}$ serial data

Ball Pitch: 0.5 mm , Ball Size: 0.25 mm

Pad layout (Photos)

* The position with PAD becomes pin 1.

LV0104CS

Block Diagram

Application circuits

LV0104CS

Spectrum Sensitivity Characteristic

$I^{2} \mathrm{C}$ Interface

The control command is received from the operation of the device by the $\mathrm{I}^{2} \mathrm{C}$ bus (Two-wire serial interface).
The obtained data is output to the operation by the $\mathrm{I}^{2} \mathrm{C}$ bus.
$\underline{I^{2} C}$ Bus Timing Diagram

Serial Interface Timing

Parameter	Symbol	Standard Mode		Fast Mode		Unit
		min	max	min	max	
Clock frequency	f(SCL)	10	100	10	400	kHz
Bus free time between start and stop condition	t(BUF)	4.7		1.3		$\mu \mathrm{s}$
Hold time after (repeated) start condition. After this period, the first	t(HDSTA)	4.0		0.6		$\mu \mathrm{s}$
Repeated start condition setup time	t(SUSTA)	4.7		0.6		$\mu \mathrm{s}$
Stop condition setup time	t(SUSTO)	4.0		0.6		$\mu \mathrm{s}$
Data hold time	t(HDDAT)	300		90		ns
Data setup time	t(SUDAT)	250		100		ns
$I^{2} \mathrm{C}$ clock (SCL) low period	t(LOW)	4.7		1.3		$\mu \mathrm{s}$
$I^{2} \mathrm{C}$ clock (SCL) high period	t(HIGH)	4.0		0.6		$\mu \mathrm{s}$
Clock / data fall time	t (F)		300		300	ns
Clock / data rise time	$t(R)$		1000		300	ns

*Specified by design and characterization ; not production tested.

LV0104CS

Data Format (Write)

Data Format (Read)

- Slave Address

A6	A5	A4	A3	A2	A1	A0	R / W
0	0	1	0	0	1	1	X

$$
\text { R/W: Read: 1, Write: } 0
$$

(1) Write Protocol (R/W=0)

7						

(2) Read Protocol (R/W=1)
$7 \quad 1$

S	Slave Address	W	A	Data High Byte	A	Data Low Byte	A	P

\square Master to Slave
Slave to Master

S: Start Condition
P: Stop Condition
A: Acknowledge
W: Write
R: Read

Register Set

(1) Measurement

	D7	D6	D5	D4	D3	D2	D1	D0
Name	MODE1	MODE0	-	GAIN1	GAIN0	INTEG1	INTEG0	MANUAL
	11:Active							$\begin{aligned} & \text { 0: Start } \\ & \text { 1: Stop } \end{aligned}$
Default	00		1	0	1			0

(2) Sleep mode

| | D7 | D6 | D5 | D4 | D3 | D2 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | MODE1 | MODE0 | - | - | - | - | - |
| | 00:Sleep | x | x | x | x | | |
| Default | 00 | x | x | x | x | x | |

(3) Setting Sensitivity

	D7	D6	D5	D4	D3	D2	D1	D0
Name	MODE1	MODE0	ADJ5	ADJ4	ADJ3	ADJ2	ADJ1	ADJ0
	10:Setting	0: Minus 1: Plus	ADJ4	ADJ3	ADJ2	ADJ1	ADJ0	
Default	00	0	0	0	0	0	0	

LV0104CS

Bits D5 to D0						
Description						
	ADJ4	ADJ3	ADJ2	ADJ1	ADJ0	
0	0	0	0	0	1	66.7%
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	
0	0	1	0	1	0	95.2%
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1 0 8 . 3 \%}$
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	
1	0	0	0	0	1	150%

<Width of sensitivity adjustment>
66.7% to 150% (ADJ5 to $\mathrm{ADJ} 0=000001=66.7 \%$, ADJ5 to $\mathrm{ADJ0}=100001=150 \%$)
<Sensitivity Calculation>

- Decreasing Sensitivity (ADJ5=0)
$\mathrm{Sn}=16 * \mathrm{ADJ} 4+8 * \mathrm{ADJ} 3+4^{*} \mathrm{ADJ} 2+2 * \mathrm{ADJ} 1+\mathrm{ADJ} 0$
S=2*Sn / (2*Sn+1)
(Example) ADJ5 to ADJ0 $=001010, \mathrm{Sn}=8+2=10, \mathrm{~S}=20 / 21=0.952$. The sensitivity is 95.2%
- Increasing Sensitivity (ADJ5=1)

Sn =16*ADJ4 + 8*ADJ3 + 4*ADJ2 + 2*ADJ1 + ADJ0
S=(2*Sn+1) / 2*Sn
(Example) ADJ5 to $\mathrm{ADJ} 0=100110, \mathrm{Sn}=4+2=6, \mathrm{~S}=13 / 12=1.083$. The sensitivity is 108.3%.
(4) Read data

Measurement result is registered to ADC channel data registers (DH,DL) in below format.

	D15	D14	D13	D12	D11	D10	D9	D8
DH (Data Higher byte)	DH7 $\left(\mathbf{2}^{15}\right)$	DH6($\left.\mathbf{2}^{14}\right)$	DH5 $\left(2^{13}\right)$	DH4 $\left(2^{12}\right)$	DH3($\left.2^{11}\right)$	DH2($\left.2^{10}\right)$	DH1 $\left(2^{9}\right)$	DH0 $\left(2^{8}\right)$

	D7	D6	D5	D4	D3	D2	D1	D0
DL (Data Lower byte)	DL7(2 ${ }^{7}$)	DL6(2 ${ }^{6}$)	DL5(25)	DL4(24)	DL3(2 ${ }^{3}$)	DL2(${ }^{2}$)	DL1(${ }^{1}$)	DL0(2 ${ }^{0}$)

- Lux calculation
(Example)
DH = "0010_0100" (DH5, DH2 = 1)
DL = "1000_0001" (DL7, DL0 = 1)
$2^{13}(8192)+2^{10}(1024)+2^{7}(128)+2^{0}(1)=9345[1 x]$

LV0104CS

LV0104CS

PACKAGE DIMENSIONS
unit : mm
ODCSP4 1.08x1.08
CASE 570AK
ISSUE O

TOP VIEW
1.08 ± 0.07

SIDE VIEW

SIDE VIEW
BOTTOM VIEW

PD assignment

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Ambient Light Sensors category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
IS31SE5000-UTLS2-TR 0805-PTSM D021 ALS-PT19-315C/L177/TR8 BH1680FVC-TR SI1132-A10-GM APS3227SP1C-P22 ALS-PDIC144-6C/L378 4681 AS7211-BLGM AS7211-BLGT AS7220-BLGM AS7221-BLGM AS7263-BLGM AS7341-DLGM AS7341-DLGT TMD27253M TMD27504 TMD37024VCM TMD37253M TSL25403M TSL27403M APDS-9007-020 DY-FPD204-6B/L3 DY-FPD3333B/L3 DY-FPD333B-A5 DY-FPD4134C-A3 DY-PD204-6B DY-PD234-6B DY-PD333B-A5 DY-PD673B-A2 CLS15-22C/L213G/TR8 HLPT5I850HP25 ISL76671AROZ-T7A LTR-303ALS-01 LTR-329ALS-01 LTR-308ALS-01 NJL7502L LV0111CF-TLM-H SFH 3711 BH1600FVC-TR BH1603FVC-TR BH1620FVC-TR BH1621FVC-TR BH1710FVC-TR BH1715FVC-TR BH1721FVC-TR BH1730FVCTR BH1749NUC-E2 BH1750FVI-TR BH1751FVI-TR

