LV5026MC

Bi-CMOS IC
LED Driver IC

ON Semiconductor ${ }^{\text {® }}$
http://onsemi.com

Overview

LV5026MC is a High voltage LED drive controller which drives LED current up to 3A with external MOSFET.
LV5026MC is realized very simple LED circuits with a few external parts. It corresponds to various wide dimming controls including the TRIAC dimming control.
Note) This LV5026MC is designed or developed for general use or consumer appliance. Therefore, it is NOT permitted to use for automotive, communication, office equipment, industrial equipment.

Functions

- High voltage LED controller
- Various Dimming Control
-TRIAC \& Analog Input \& PWM Input
- Soft Start function
- Built-in TRIAC stabilized function
- Built-in circuit of detection of overvoltage of CS pin.
- Selectable Switching frequency [50 kHz or 70 kHz , open: 50 kHz]

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum input voltage	$V_{\text {IN }}$ max (Note1)		-0.3 to 42	V
REF_OUT, REF_IN, RT, CS, PWM_D, ACS			-0.3 to 7	V
OUT1 pin			-0.3 to 42	V
OUT2 pin	VOUT_abs		-0.3 to 42	V
Allowable power dissipation	Pd max		With specified board ${ }^{*}$	1.0
Junction temperature	Tj		W	
Operating junction temperature	Topj (Note2)		-30 to +125	${ }^{\circ}{ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +150	${ }^{\circ} \mathrm{C}$

*1 Specified board: $58.0 \mathrm{~mm} \times 54.0 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ (glass epoxy board)
Note1) Absolute maximum ratings represent the values which cannot be exceeded for any length of time.
Note2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

[^0]Recommended Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Input voltage	V_{IN}		8.5 to 24	V

* Note : supply the stabilized voltage.

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, unless otherwise specified.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Reference voltage block						
Built-in reference voltage	VREF		0.585	0.605	0.625	V
VREF $\mathrm{V}_{\text {IN }}$ line regulation	VREF_LN	$\mathrm{V}_{\text {IN }}=8.5$ to 24 V		± 0.5		\%
Reference output voltage	REFOUT	${ }^{\text {RREFOUT }}$ = 0.5 mA		3.0		V
- Maximum load	REFOUT_MAX		0.5			mA
- equivalent output impedance	REFOUT_RO			10		Ω
Under voltage lockout						
Operation start Input voltage	UVLOON		8	9	10	V
Operation stop input voltage	UVLOOFF		6.3	7.3	8.3	V
Hysteresis voltage	UVLOH			1.7		V
Oscillation						
Frequency	FOSC1	RT =OPEN	40	50	60	kHz
	FOSC2	RT = REF_OUT	55	70	85	kHz
FOSC1 Switch voltage	$\mathrm{V}_{\text {OSC }}{ }^{1}$		2		5	V
FOSC2 Switch voltage	$\mathrm{V}_{\text {OSC }}{ }^{2}$				0.5	V
Maximum ON duty	MAXDuty			93		\%
Comparator						
Input offset voltage (Between CS and VREF)	VIO_VR			1	10	mV
Input offset voltage (Between CS and REFIN)	V_{IO} RI			1	10	mV
Input current	Iosc			160		nA
	IIOREF			80		nA
CS pin max voltage	VOM				1	V
malfunction prevention mask time	TMSK			150		ns
PWM_D circuit						
OFF voltage	$\mathrm{V}_{\text {OFF }}$		2		5	V
ON voltage	$\mathrm{V}_{\text {ON }}$		0		0.6	V
Thermal protection circuit						
Thermal shutdown temperature	TSD	*Design guarantee		165		${ }^{\circ} \mathrm{C}$
Thermal shutdown hysteresis	$\Delta T S D$	*Design guarantee		30		${ }^{\circ} \mathrm{C}$
Drive Circuit						
OUT sink current	${ }^{1} 1$		500	1000		mA
OUT source current	100			120		mA
Minimum On time	TMIN			200	300	ns

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
TRIAC Stabilization circuit						
Threshold of OUT2	$\mathrm{V}_{\text {ACS }}$	OUT2 $=$ High [less than right record]	2.8	3.0	3.2	V
OUT2 sink current	${ }^{1}{ }^{21}$	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, OUT2 $=6 \mathrm{~V}$		0.6		mA
OUT2 source current	I^{20}	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, OUT2 $=6 \mathrm{~V}$		0.6		mA
$\mathrm{V}_{\text {CC }}$ current						
UVLO mode $\mathrm{V}_{\text {IN }}$ current	${ }^{\text {ICCOFF }}$	$\mathrm{V}_{\text {IN }}<$ UVLOON		80	120	$\mu \mathrm{A}$
Normal mode $\mathrm{V}_{\text {IN }}$ current	${ }^{\text {I CCON }}$	$\mathrm{V}_{\text {IN }}>$ UVLOON, OUT $=$ OPEN		0.8		mA
$\mathrm{V}_{\text {IN }}$ over voltage protection circuit						
V_{IN} over voltage protection voltage	$\mathrm{V}_{\text {IN }} \mathrm{OVP}$		24	27	30	V
$\mathrm{V}_{\text {IN }}$ current at OVP	Inove	$\mathrm{V}_{\mathrm{IN}}=30 \mathrm{~V}$	0.7	1.0	1.5	mA
CS terminal abnormal sensing circuit						
Abnormal sensing voltage	CSOCP			1.9		V

*: Design guarantee (value guaranteed by design and not tested before shipment)

Package Dimensions

unit : mm (typ)
3426A

Pin Assignment

Block Diagram

Sample Application Circuit

Non isolation

Isolation

Pin Functions

Pin No.	Pin name	Pin function	Equivalent circuit
1	RT	Switching frequency selection pin. L or Open : 50 kHz switching, $\mathrm{H}: 70 \mathrm{kHz}$ switching. In case of 70 kHz ,connect RT pin to REFOUT pin. on time	
2	REF_OUT	Built-in 3V Regulate out Pin. If this function isn't used, please connect to nothing.	
3	REF_IN	External LED current Limit Setting pin. If less than VREF $(0.61 \mathrm{~V})$ voltage is input, Peak current value is used at the input voltage. If more than REF_IN voltage is input, it is done at VREF voltage. If this function isn't used, please connect nothing.	
4	CS	LED current sensing in. If this terminal voltage exceeds VREF (Or REF_IN), external FET is OFF. And if the voltage of the terminal exceeds 1.9 V , LV5026MC turns to latch-off mod	
5	PWM_D	PWM Dimming pin.L or open: normal operation, H: Stop operation.	
6	GND	GND pin.	
7	OUT	Driving the external FET Gate Pin.	
8	VIN	Power supply pin. Operation : $\mathrm{V}_{\text {IN }}>$ UVLOON Stop: $\mathrm{V}_{\text {IN }}<$ UVLOOFF Switching Stop : $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {IN }} O V \mathrm{O}$	
9	OUT2	This pin drive the FET which is stabilized the TRIAC dimming application. If $A C S$ is less than $3 V$, OUT2 turn High voltage. If this function isn't used, please connect nothing.	
10	ACS	ACS pin senses AC Voltage. If this function isn't used, please connect GND.	

LED current and inductande setting

- Relation ship beween REF_IN and CS pin voltage(Power Factor Crrection(PFC))

The output current value is the average of the current value that flows during one cycle. The current value that flows into coil is a triangular wave shown in the figure below. Make sure to set Ipk so that (average of current value at one cycle) is equal to (LED current value).Ipk is set by the relationship between REF_IN voltage and Rcs voltage.
This relationship make Power Factor Correction (PFC).Therefore, it is available to make LED current a sine curve.

- Setting Zener voltage

Vzd depend on LED voltage (VF). Choose Zener diode around Vf (LED voltage).When VAC voltage is lower than Vf, LED operation is not normal. Using Zener diode prevents incorrect operating during VAC voltage lower than Vf. In detail, refer to [LED current and inductance setting]
In case of REF_IN pin open, this error amplifier negative input(-) is under control of internal VREF voltage (0.605Vtyp).

Ipk: peak inductor current
Vf: LED forward voltage drop
Vac: effective value, R.M.S value
VREF: Built-in reference voltage (0.605V)
VREF_IN: REF_IN voltage (6 pin)
Rs: External sense resistor
Vzd: Zener diode voltage (REF_IN pin)

LED current and inductance setting

It is available to use both no-isolation and isolation applications.
(For non-isolation application)
The output current value is the average of the current value that flows during one cycle. The current value that flows into coil is a triangular wave shown in the figure below. Make sure to set IL_PK so that (average of current value at one cycle) is equal to (LED current value).

Given that the period when current flows into coil is
DutyI $=\frac{T_{-} c+T_{-} d}{T}$
$I p k \times \frac{1}{2} \times($ Duty $\times T) / T=I L E D$
$I p k \times \frac{2 \times I L E D}{D u t y I} \quad$ (1) since $\quad I p k \times \frac{V R E F _I N}{R c s}$
$R c s \times \frac{V F E F _I N}{I p k}=\frac{D u t y I \times V F E F _I N}{2 I L E D}$
(2)

Since formula for LED current is different between on period and off period as shown above,
$I p k \times \frac{V a c-V f}{L} \times T_{-} c=\frac{V f}{L} \times T_{-} d$
Since $T_{-} c+T_{-} d=\operatorname{DutyI} \times T, T_{-} c=\operatorname{DutyI} \times T-T_{-} d \quad$ (4)
Based on the result of (3) and (4), $T_{-} d=\operatorname{DutyI} \times T \times \frac{V a c-V f}{V a c}$
To obtain L from the equation (1), (3), (5),
$L \times \frac{V f \times \text { DutyI }}{2 \times I L E D} \times D u t y I \times T=\frac{V a c-V f}{V a c}=\frac{V f}{2 \times I L E D} \times \frac{1}{f o s c} \times \frac{V a c-V f}{V a c} \times(D u t y I)^{2}$
Since LED and inductor are connected in serial in non-isolation mode, LED current flows only when AC voltage exceed VF.

Given that the ratio of inductor current to AC input is DutyAC.
DutyAC $=\frac{90-\arcsin \left(\frac{V f}{\sqrt{2} V r m s}\right)}{90}$
Since the period when the inductor current flows are limited by DutyAC, the formula (6) is represented as follows:
$L=\frac{V f}{2 \times I L E D} \times \frac{1}{f o s c} \times \frac{V a c-V f}{V_{I N}} \times(\text { DutyI })^{2} \times\left(\frac{90-\arcsin \left(\frac{V f}{\sqrt{2 V r m s}}\right)}{90}\right)^{2}$
(for Isolation circuit)
Using the circuit diagram below, the wave form of the current that flows to Np and Ns is as follows.
Current waveform flows to primary side and secondary.

Is
(Secondary side current)

[Inductance Lp of primary side and sense resistor Rs]
If a peak current flow to transformer is represented as Ipk_p, the power (Pin) charged to the transformer on primary side can be represented as:
Pin $=\frac{1}{2} \times L p \times(\text { Ipk_p })^{2} \times$ fosc
Ipk $_p=\frac{V a c}{L p} \times T o n _p$
$L p=\frac{V a c^{2} \times \text { Ton_p }^{2} \times \text { fos } C}{2 \times \operatorname{Pin}}=\frac{V a c^{2} \times \text { Don_ }^{2} p^{2}}{2 \times \operatorname{Pin} \times \text { fosc }}$
(Don $_p=\frac{\text { Ton }_{-} p}{T}=T o n _p \times f o s c$),
To substitute the following to the formula below,
$\because \eta=\frac{\text { Pout }}{\text { Pin }}$
$\therefore L p=\frac{\text { Vac }^{2} \times \text { Ton_p } p^{2} \times \text { fos } \times \eta}{2 \times \text { Pout }}=\frac{\text { Vac }^{2} \times \text { Don }^{2} \times \eta}{2 \times \text { Pout } \times \text { fosc }}$

Sense resistor is obtained as follows.
$R s=\frac{V R E F _I N}{I p k _p}=\frac{V R E F _I N \times L p}{V a c \times T o n _p}=\frac{V R E F _I N \times L p}{V a c \times D o n _p \times T}$
[Inductance Ls of secondary side]
Since output current Iout is the average value of current flows to transformer of secondary side
Iout $=I p k _s \times \frac{T o n _s}{T} \times \frac{1}{2}=\frac{I p k _s \times D o n _s}{2}\left(D o n _s=\frac{T o n _s}{T}=T o n _s \times f o s c\right)$
$I p k _s=\frac{\text { Vout }}{L s} \times$ Ton_s $=\frac{\text { Vout }}{L s}=\frac{\text { Don_s }}{\text { fosc }}$
$L s=\frac{\text { Vout } \times T \times \text { Don_s }^{2}}{2 \times \text { Iout }}=\frac{\text { Vout } \times \text { Don_s }^{2}}{2 \times \text { Iout } \times \text { fosc }}=\frac{\text { Vout }^{2} \times \text { Don_s }^{2}}{2 \times \text { Pout } \times \text { fosc }}$
Calculation of the ratio of transformer coil on primary side and secondary side Since ratio and inductance of transformer coil is
$\frac{N s}{N p}=\frac{\sqrt{L s}}{\sqrt{L p}}$
substituted equations (15), (19) for (20)
$\therefore \frac{N p}{N s}=\frac{\text { Vac }}{\text { Vout }} \times \sqrt{\eta} \times \frac{\text { Don_p }}{\text { Don_s }}$
Calculation of transformer coil on primary side and secondary side
$N=\frac{V a c \times 10^{8}}{2 \times \Delta B \times A e \times f o s c}$
$\Delta \mathrm{B}$: variation range of core flux density [Gauss]
Ae: core section area [cm^{2}]
To use Al (L value at 100T),
$N=\sqrt{\frac{L}{A l}} \times 10^{2}$
L: inductance $[\mu \mathrm{H}]$
Al : L value at $100 \mathrm{~T}\left[\mathrm{uH} / \mathrm{N}^{2}\right]$
\lg (Air gap) is obtained as follows:
$\lg =\frac{\mu_{\mathrm{r}} \mu_{0} N^{2} A_{e} 10^{2}}{L}$
$\mu \mathrm{r}$: relative magnetic permeability, $\mu \mathrm{r}=1$
$\mu 0$: vacuum magnetic permeability $\mu 0=4 \pi^{*} 10^{-7}$
N : turn count [T]
Ae: core section area $\left[\mathrm{m}^{2}\right]$
L : inductance $[\mathrm{H}]$

Bleeder current cuircuit for TRIAC dimmer

1. Operating voltage setting

ACS pin voltage set operating voltage at OUT2. ACS pin threshold volage is 3 V typ.
OUT2 operating voltage is set by R1 and R2. R1 and R2 is determined below.

$$
A C S=\operatorname{Vac} \times \frac{R 2}{R 1+R 2}
$$

2. Bleeder current setting

Rd set hold current at Triac dimmer.
Bleeder current is set at Rd depending on Triac dimmer.
a blockdiagram in outline

a blockdiagram in outline

Description of operation
protection function

	tilte	outline	monitor point	note
1	UVLO	Under voltage lock out	$V_{\text {CC voltage }}$	available FET current
2	OCP	Over current protection	CS voltage	
3	OVP	Over voltage protection	$\mathrm{V}_{\text {CC }}$ voltage	
4	OTP (TSD)	Over Temperature Protection (Thermal Shut Down)	PN Junction temperature	

1. UVLO (Under voltage lock out)

If $\mathrm{V}_{\text {IN }}$ voltage is 7.3 V or lower, then UVLO operates and the IC stops. When UVLO operates, the power supply current of the IC is about $80 \mu \mathrm{~A}$ or lower. If $\mathrm{V}_{\text {IN }}$ voltage is 9 V or higher, then the IC starts switching operation.

2. UVLO (Under voltage lock out)

The CS pin sense the current through the MOS FET switch and the primary side of the transformer. This provides an additional level of protection in the event of a fault. If the voltage of the CS pin exceeds VCSOCP (1.9V typ) (A), the iternal comparator will detect the event and turn off the MOSFET. The peak switch current is calculated Io (peak) [A] = VSOCP [V]/Rsense [Ω]
The $V_{\text {CC }}$ pin is pulled down to fixed level, keeping the controller lached off.The lach reset occurs when the user disconnects LED from VAC and lets the V_{CC} falls below the V_{CC} reset voltage, UVLOOFF (7.3 V typ) (B). Then VCC $^{\text {rise UVLOON (9V typ) (} C \text {), restart the switching. }}$

3. OVP (Over voltage protection)

If the voltage of $\mathrm{V}_{\text {IN }}$ pin is higher than the internal reference voltage $\mathrm{V}_{\text {IN }} \mathrm{OVP}$ (27 V typ), switching operation is stopped.
The stopping operation is kept until the voltage of V_{IN} is lower than 7.3 V . If the voltage of $\mathrm{V}_{\text {IN }}$ pin is higher than 9 V , the switching operation is restated.

4. TSD (Thermal shut down protection)

The thermal shutdown function works when the junction temperature of IC is $165^{\circ} \mathrm{C}(\operatorname{typ})(A)$, and the IC switching stops. The IC starts switching operation again when the junction temperature is $135^{\circ} \mathrm{C}$ typ (B)) or lower.

Skip frequency function
LV5026MC contains the skip frequency function for reduction of the peak value of conduction noise. This function changes the frequency as follows.

Skip frequency function

Switching frequency is changed as follows. $\ldots \times 0.9 \rightarrow \times 1.1 \rightarrow \times 1.05 \rightarrow \times 1 \rightarrow \times 0.95 \rightarrow \times 0.9 \rightarrow \times 1.1 \ldots$ It's repeated by this loop.

LV5026MC

PWM dimmer function
LED current can be adjusted according to Duty of PWM pulse input to PWM dimmer pin. PWM pulse is High (2V to 5 V) then switching operation stops, and LED current stops flowing. PWM pulse is Low (under 0.6V), then switching operation stop is released, and it returns to normal operation.

An outline of PWM_D pin LED current vs PWM_D duty (outline)

PWM_D

OUT (FET gate)

OUT
(FET gate)

FET current (CS voltage) \qquad

FOSC1 - Ta

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Development Tools category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
MIC2870YFT EV ADP8860DBCP-EVALZ LM3404MREVAL ADM8843EB-EVALZ TDGL014 ISL97682IRTZEVALZ LM3508TLEV EA6358NH MAX16826EVKIT MAX16839EVKIT+ TPS92315EVM-516 MAX6956EVKIT+ OM13321,598 DC986A DC909A DC824A STEVAL-LLL006V1 IS31LT3948-GRLS4-EB 104PW03F PIM526 PIM527 MAX6946EVKIT+ MAX20070EVKIT\# MAX21610EVKIT\# MAX6951EVKIT MAX20090BEVKIT\# MAX20092EVSYS\# PIM498 AP8800EV1 ZXLD1370/1EV4 MAX6964EVKIT TLC59116EVM$\underline{390} 1216.1013$ TPS61176EVM-566 TPS61197EVM TPS92001EVM-628 $1270 \underline{1271.2004} \underline{1272.1030} \underline{1273.1010} \underline{1278.1010} \underline{1279.1002}$ $\underline{1279.1001} \underline{1282.1000} \underline{1293.1900} \underline{1293.1800} \underline{1293.1700} \underline{1293.1500} \underline{1293.1100} \underline{1282.1400}$

[^0]: Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

