ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
Linear LED Driver, 24-Channel, Bus Controlled

Overview

The LV5239TA is a serial bus controlled linear low side driver for LEDs (or other loads). The 24 channels are grouped in 3 color blocks (RGB) of 8 channels each. The ON-time for each channel can be programmed by an 8 bit register. The reference current is programmed by a single resistor, a 3 bit register defines the current for each color block as a fraction (20 to 100%) of the reference current to adjust for color temperature.
Systems parameters can be programmed via 2 wire serial bus, or 3 wire SPI bus with EN.

Features

- LED supply from 3 V to TBDV with transient tolerance up to 42 V .
- System supply from 3 V to 12 V with transient tolerance up to 13.6 V .
- Up to 100 mA resistor defined maximum current for all channels.
- 3 bit individually adjustable current for each color group RGB.
- 8 bit luminance dimming for each channel.
- 2 or 3 wire bus interface with up to 32 slave addresses.
- Thermal and undervoltage lock-out protection.
- Thermally efficient exposed die 48 pin TQFP package for operation up to $85^{\circ} \mathrm{C}$ ambient.

Typical Applications

- Gaming (slot machine) and entertainment equipment.
- LED displays.
- Digital information signs.

Figure 1: Typical Application Diagram

ON Semiconductor ${ }^{\text {® }}$
www.onsemi.com

ORDERING INFORMATION

Ordering Code:
LV5239TAZ-NH

Package

TQFP48 EP
(Pb-Free / Halogen Free)
Shipping (Qty / packing)
1000 / Tape \& Reel
\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub link/Collateral/BRD8011-D.PDF

Pin Assignment

Pin Descriptions

Pin No.	Pin name	I/O	Description	Pin Circuit
1	VREF	O	Internal supply output pin. Regulates to 5 V if SVCC is higher than 5 V . Bypass with a TBD capacitor.	
2	SCLK	I	Serial interface clock signal input pin. Data is latched at the rising clock edge.	TYPE1
3	SDATA	1	Serial interface input pin. Data frame consists of: Slave_Address[7:0] - Register_Address[7:0] - Data1[7:0] ... DataN[7:0]	TYPE1
4	SDEN	1	Active high, SPI Mode enable signal. Must go low after each SPI frame. Not used for 2 wire interface.	TYPE1
5	CTLSCT	I	Select pin for 2-wire or 3-wire interface. Tie to GND for 3-wire, tie to VREF for 2wire bus.	TYPE2
6	OUTSCT	I	Analog three level selection pin to set current characteristics for the output channels. See "OUTSCT Setting" on page 8 for details.	TYPE3
7	RESET	1	Active high reset input pin. Clears all register settings.	TYPE4
8	RT1	O	Maximum reference current programming pin. Connect a resistor $>10 \mathrm{k} \Omega$ from this pin to GND to define maximum LED current according to the following formula: IREF $=1.22 \times 800$ / RT.	TYPE5
9	NC		No connection.	
10	SGND	-	Analog circuit GND pin.	
11-15	A0-4	I	Slave address setting pin. Refer to "Slave address setting" on page 9 for details.	TYPE6
16	LEDR1	1	LED red 1 current input pin.	TYPE7
17	LEDG1	1	LED green 1 current input pin.	TYPE7
18	LEDB1	I	LED blue 1 current input pin.	TYPE7
19	PGND1	-	GND pin dedicated for LED driver. Connect directly to ground plane.	
20	LEDR2	I	LED red 2 current input pin.	TYPE7
21	LEDG2	I	LED green 2 current input pin.	TYPE7
22	LEDB2	I	LED blue 2 current input pin.	TYPE7
23	LEDR3	I	LED red 3 current input pin.	TYPE7
24	LEDG3	I	LED green 3 current input pin.	TYPE7
25	LEDB3	I	LED blue 3 current input pin.	TYPE7
26	PGND2	-	GND pin dedicated for LED driver. Connect directly to ground plane.	
27	LEDR4	1	LED red 4 current input pin.	TYPE7
28	LEDG4	1	LED green 4 current input pin.	TYPE7
29	LEDB4	I	LED blue 4 current input pin	TYPE7
30	VLED		Protection for LED drivers. For higher LED voltages. VLED must be limited to 42.0 V (max).	
31	NC		No connection	
32	LEDR5	I	LED red 5 current input pin.	TYPE7

Continued from preceding page

Pin No.	Pin name	I/O	Description	Pin Circuit
33	LEDG5	I	LED green 5 current input pin.	TYPE7
34	LEDB5	I	LED blue 5 current input pin.	TYPE7
35	PGND3	-	GND pin dedicated for LED drivers 4 and 5. Connect directly to ground plane.	
36	LEDR6	I	LED red 6 current input pin.	TYPE7
37	LEDG6	I	LED green 6 current input pin.	TYPE7
38	LEDB6	I	LED blue 6 current input pin.	TYPE7
39	LEDR7	I	LED red 7 current input pin.	TYPE7
40	LEDG7	I	LED green 7 current input pin.	TYPE7
41	LEDB7	I	LED blue 7 current input pin.	TYPE7
42	PGND4	-	GND pin dedicated for LED drivers 6 and 7. Connect directly to ground plane.	
43	LEDR8	I	LED red 8 current input pin.	TYPE7
44	LEDG8	I	LED green 8 current input pin.	TYPE7
45	LEDB8	I	LED blue 8 current input pin.	TYPE7
46	TEST1	I	Test1 pin (connected to GND)	TYPE8
47	TEST2	I	Test2 pin (connected to GND)	TYPE9
48	SVCC	-	System power supply input. For LED supply voltages from 3 to 12 V connect directly to LED supply. For higher LED voltages SVCC must be limited to 13.6 V (max).	

Pin Circuit

TYPE1 SCLK, SDATA, SDEN	TYPE2 CTLSCT	TYPE3
TYPE4	TYPE5	TYPE6
TYPE7 LEDR1-8, LEDG1-8, LEDB1-8	TYPE8 TEST1	TYPE9

Absolute Maximum Ratings (Note 1,3)

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	VCC max		13.6	V
	VLED		42	V
	VREF		5.8	V
Output voltage	VO max	LED off	42	V
Output current	$10 \max$	Open drain	100	mA
Allowable power dissipation	Pd max	$\mathrm{Ta} \leq 25^{\circ} \mathrm{C} \mathrm{(Note} \mathrm{2)}$	1.25	$\mathrm{~W}^{\circ} \mathrm{C}$
Operating temperature	Topr		-25 to +85	-25 to +150
Operating Junction Temperature	Tj		-40 to +150	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		${ }^{\circ} \mathrm{C}$	

1. Stresses exceeding those listed in the Maximum Rating table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
2. Specified board: $114.3 \mathrm{~mm} \times 76.1 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, glass epoxy board. Exposed Die-pad area is not a substrate mounting
3. If you should intend to use this IC continuously under high temperature, high current, high voltage, or drastic temperature change, even if it is used within the range of absolute maximum ratings or operating conditions, there is a possibility of decrease reliability. Please contact us for a confirmation.

Recommended Operating Conditions (Note 4)

Parameter	Symbol	Pin	Ratings	Unit
Operating supply voltage range	V_{CC} op	$\mathrm{SV}_{\mathrm{CC}}$	3.0 to 12.8	V
	$\mathrm{~V}_{\text {LED }}$ op	VLED	3.0 to 42	V
	$\mathrm{~V}_{\text {REF }}$ op	VREF	3.0 to 5.5	V

4. Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, 3.3 \mathrm{~V}<\mathrm{VCC}<5 \mathrm{~V}$ (Note 5)

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply current	${ }^{1} \mathrm{CC}{ }^{1}$	All LEDs off	1.8	2.3	2.9	mA
Reference current pin voltage	VRT	$\mathrm{RT} 1=30 \mathrm{k} \Omega$	1.14	1.22	1.30	V
Line regulation	$\Delta \mathrm{IL}$	$\mathrm{V}_{\mathrm{O}}=0.7 \text { to } 4.0 \mathrm{~V}$ (Same channel line regulation)	-10			\%
Output current accuracy	$\Delta^{1} \mathrm{OL}$	$\mathrm{I}_{\mathrm{O}}=32.40 \mathrm{~mA}$ (Between bits pairing characteristics)			5	\%
LED driver output current 1	IMAX1	$\begin{aligned} & \mathrm{RT} 1=30 \mathrm{k} \Omega \\ & \text { LED OUTSCT }=\mathrm{L} \end{aligned}$	30.0	32.4	34.8	mA
LED output on resistance 1	Ron1	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$		10	20	Ω
OFF leak current	lleak	LED OFF			10	$\mu \mathrm{A}$
VCC Power on RESET voltage	VPOR	POR release voltage threshold		2.5		V
	VRST	Undervoltage lockout threshold		2.3		V
VREF voltage	VREF	VREF = open		4.9		V
VREF voltage	VREF1	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	4.7	5.1	5.4	V

5. Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Control Circuit at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{VREF}=5.0 \mathrm{~V}$ (Note 5)

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
H level 1	VH1	Input H level OUTSCT	4.5		5.0	V
M level 1	VM1	Input M level OUTSCT	1.8		3.0	V
L level 1	VL1	Input L level OUTSCT	-0.2		0.5	V
H level 2	VH2	Input H level CTLSCT	3.5		5.0	V
L level 2	VL2	Input L level CTLSCT	-0.2		0.5	V
H level 3	VH3	Input H level RESET	4.0		5.0	V
L level 3	VL3	Input L level RESET	-0.2		1.0	V
H level 4	VH4	Input H level SCLK, SDATA, SDEN	4.0		5.0	V
L level 4	VL4	Input L level SCLK, SDATA, SDEN	-0.2		1.0	V
H level 5	VH5	Input H level A0 to A4	3.5		5.0	V
L level 5	VL5	Input L level A0 to A4	-0.2		0.5	V

Control Circuit at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{VREF}=3.3 \mathrm{~V}$ (Note 5)

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
H level 1	VH1	Input H level OUTSCT	2.8		3.3	V
M level 1	VM1	Input M level OUTSCT	1.2		1.7	V
L level 1	VL1	Input L level OUTSCT	-0.2		0.5	V
H level 2	VH2	Input H level CTLSCT	2.3		3.3	V
L level 2	VL2	Input L level CTLSCT	-0.2		0.5	V
H level 3	VH3	Input H level RESET	2.7		3.3	V
L level 3	VL3	Input L level RESET	-0.2		0.6	V
H level 4	VH4	Input H level SCLK, SDATA, SDEN	2.7		3.3	V
L level 4	VL4	Input L level SCLK, SDATA, SDEN	-0.2		0.6	V
H level 5	VH5	Input H level A0 to A4	2.3		3.3	V
L level 5	VL5	Input L level A0 to A4	-0.2		0.5	V

Serial bus timing conditions

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Cycle time	tcy1	SCLK clock period	200	-	-	ns
Data setup time	ts0	SDEN setup time relative to the rise of SCLK	90	-	-	ns
	ts1	SDATA setup time relative to the rise of SCLK	60	-	-	ns
Data hold time	th0	SDEN hold time relative to the fall of SCLK	200	-	-	ns
	th1	SDATA hold time relative to the fall of SCLK	60	-	-	ns
Pulse width	tw1L	Low period pulse width of SCLK	90	-	-	ns
	tw1H	High period pulse width of SCLK	90	-	-	ns
	tw2L	Low period pulse width of SDEN	1	-	-	$\mu \mathrm{S}$

Typical Operating Characteristics (SVCC $=5.0 \mathrm{~V}, \mathrm{VREF}=5.0 \mathrm{~V}$)

LEDOUT Line regulation

VREF OUT Load regulation

Figure 2: Block Diagram

System Startup and Shutdown (SVCC, RESET)

The LV5239TA is supplied via SVCC. If the voltage on SVCC rises above the POR level of 2.5 V (typ) the
system setup registers are being reset to their default state, and the reference internal reference circuit at VREF starts up.

SPI will be available after 100usec after power-on reset.

Figure 3: SVCC startup and shutdown

SVCC can be connected to the LED supply of the application as long as that supply is between 3 and 12 V . If the LED supply is higher than 12 V , SVCC must be supplied from a separate source.

If SVCC drops below the undervoltage lockout level of 2.3 V (typ) the system shuts down.

Internal References (SVCC, VREF, RT1)

An internal voltage reference of 5 V (typ) is generated at VREF from SVCC. Do not connect external loads.

An LED reference current is defined by connecting a resistor R_{RT} between RT1 and GND according to the formula: $\mathrm{I}_{\mathrm{MAX}}=1.22 \times 800 / \mathrm{R}_{\mathrm{RT}}$. A fraction of this current ($20 \%-100 \%$) is applied to each LED channel.

LED Driver Configuration (LEDR1-8, LEDG1-8, LEDB1-8, OUTSCT)

The LEDs are connected between the system LED supply and IC channels LEDR1-8, LEDG1-8, LEDB1-8 such that the LED current flows into the IC. Depending on the LED drive voltage, it is possible to connect a single LED or a chain of LEDs.
For details on the relationship between chain length, LED supply voltage and power dissipation see section "Thermal considerations" below.

The LV5239TA can adjust color temperature and brightness for up to 24 LEDs. Color temperature is adjusted by varying the LED current, and brightness (luminance) is adjusted by varying the on-time of the LED a fixed time period (duty-cycle).

Color temperature control

The 24 LED channels are organized into 3 color groups (Red, Green, Blue) of 8 channels each. The currents for each color group are programmed by a 3 bit register as a
percentage of the LED reference current $\mathrm{I}_{\text {MAX }}$. Percentages of 20, 31, 43, 54, 66, 77 and 100 of are possible.

Luminance control

The brightness of each LED channel is defined by the duty cycle Duty(\%): the time $t_{\text {ON }}$ the channel is active during a time window $\mathrm{t}_{\text {Cycle }}$. The duty cycle is defined by the following formula. Duty(\%) $=100 \cdot \mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\text {CYCLE }}$. Each LED channel has an 8-bit register to vary the duty cycle between OFF (0.0%) and 99.6% in steps of 0.39% each.

The PWM period is defined by the 3 most significant bits at address 00 h starting with 0.5 msec , doubling with each bit up to 8 ms .

OUTSCT Settings

In addition to the settings mentioned above, it is also possible to subdivide the 8 LED channels within the color groups into 6 and 2 LED channels grouped in the following way:

	LED Driver Output Pin	
OUTSCT Level	LED1, LED2, LED3, LED4, LED5, LED6	
L=-0.2 to 0.3 V	Constant current output Set maximum current by built-in D/A (3 bits) 6.40 mA to $32.40 \mathrm{~mA}, \mathrm{RT1}=30 \mathrm{k} \Omega(\mathrm{f}=1 \mathrm{MHz})$	LED7,LED8
$\mathrm{H}=4.7$ to 5.0 V	Open drain output Set current by external resistor. $R_{\text {ON }}=10 \Omega$	Same as the other LEDs
$\mathrm{M}=1.8$ to 3.0 V	Constant current output Set maximum current by built-in $\mathrm{D} / \mathrm{A} \mathrm{(3} \mathrm{bits)}$ 6.40 mA to $32.40 \mathrm{~mA}, \mathrm{RT} 1=30 \mathrm{k} \Omega(\mathrm{f}=1 \mathrm{MHz})$	Open drain output Set current by external resistor. RON $=10 \Omega$

Thermal Considerations

Supplying a large number of LEDs from the LV5239TA leads to a rise in chip temperature. The self-heating depends on:

- the drive current I_{O} flowing into the LED channel
- the voltage at the output $\mathrm{V}_{\text {Out }}$ of the LED channel
- and the duty cycle D they are driven with
leading to the following formula for dissipated power in each channel:

$$
\mathrm{P}_{\mathrm{CH}}=\mathrm{I}_{\mathrm{O}} \times \mathrm{V}_{\mathrm{OUT}} \times \mathrm{D}
$$

The only architecture sensitive value is $\mathrm{V}_{\text {Out }}$. It must be greater than 0.5 V (min) to allow for regulation, but also as small as possible. It is therefore advisable to connect the maximum possible number of LEDs in series to one channel.

The total power dissipation $\mathrm{P}_{\text {тот }}$ of the IC is then the sum of all P_{CH} together. $\mathrm{P}_{\text {Tот }}$ must not exceed the power allowed by the safe operating are shown in Figure 4.

Figure 4: Safe Operating Area
To make evaluation of the actual drive capability easier, a number of plots are included after page 13. These plots show the safe operating area for LED string current I_{O} on the vertical axis, the number of active RGB Channels on the horizontal axis (times 3 for each color group) along with individual duty cycle curves at a given VOUT and temperature.

Figure 5: Thermally Safe Operation Example

The example in Figure 5 shows operation of up to 8 RGB channels (24LEDs) at $85^{\circ} \mathrm{C}$ and a channel voltage of 4 V . Operation below the curve is safe! It is therefore possible to drive 2 RGB LEDs (6 channels) at 20 mA or 8 RGB LEDs (24 channels) at 4 mA with 100% duty cycle. If only 20% duty cycle is required, all 8 RGBLEDs can be driven with 20 mA .

See more examples in section "LEDOUT Duty Cycle De-rating" starting on page 13.

Overtemperature shutoff

To protect the circuit from permanent damage or fire, overtemperature shutoff is implemented. If the junction temperature of the IC reaches $175^{\circ} \mathrm{C}$, all LED outputs are turned OFF. The thermal shut down is not latched, s0 when the temperature falls below $130^{\circ} \mathrm{C}$ activity resumes.

Serial Bus Communication (SCLK, SDATA, SDEN, CTLSCT)

All parameters described above are written to the LV5239TA via a single directional 2-wire or 3-wire serial bus with a clock frequency of up to 5 MHz . The bus type is defined by the state of pin CTLSCT (VREF = 2-wire, GND = 3-wire).

Each bus message consists of an 8bit slave (IC) address, followed by an 8bit register address, followed by one or more 8bit data words. The register address will self-increment for consecutive data words as long as the communication is valid. After the last address was written, the next data word will be written to address 00 h again. For detailed information on addresses and register contents see section "Register Map" on page 12.

Slave Address (A4-A0)
Each IC is identified by its unique slave address. The most significant two bits of the 8bit slave (IC) address are fixed to 10b. 32 Slave addresses are hardware defined by pins A0-A4 as described below.

	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0
ADDRESS	1	0	A4	A3	A2	A1	A0	0

Terminal PIN (Input)					SLAVE ADDRESS							
A4	A3	A2	A1	A0	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SAO
L	L	L	L	L	1	0	0	0	0	0	0	0
\ldots					1	0	A4	A3	A2	A1	A0	0
H	H	H	H	H	1	0	1	1	1	1	1	0

3-wire Serial Bus Communication (SCLK, SDATA, and SDEN).

In 3-wire communication a frame is started with a rising edge of SDEN and terminated with a falling edge of

SDEN. SCLK latches data at the rising edge. The smallest data word is 24 bits long consisting of:

Figure 6: 3 Wire Serial Data Frame

If the number of SCLK transitions is less than 23, Data is not latched. If it is 25 or more, the register address is automatically incremented and the next data word will be latched after eight clock cycles.

2-wire Serial Bus Communication (SCLK, SDATA)

In 2-wire communication the LV5239TA watches SDATA at every rising SCLK edge. A data frame begins after START condition: nine consecutive detections of a " 1 " (high) followed by a " 0 " (BLANK). This is true even during an ongoing data transfer: serial communication will restarted by a START condition ("1111111111") + BLANK ("0").

After start detection, the eight bit slave address will be latched after receiving a BLANK (0h) with the ninth bit. The register address will be latched after receiving a BLANK"0" after eight address bits. The third byte is the
data byte which was addressed by the register address received before. The data byte will be latched after receiving a BLANK" 0 " in position nine after eight data bits.

When data bytes continue after this, the register address will be automatically incremented after each byte transfer is completed after receiving BLANK"0".
If the BLANK after a data transfer is " 1 ", including slave address and register address, the single byte data just before it will not be written, and subsequent data is ignored until another START condition is detected.

Figure 7: 2-wire Serial Communication Frame

Minimum Data length is 37bits:
Start condition "111111111"(9bit) + BLANK("0")

+ Slave address(8bit) + BLANK("0") + Register address(8bit) + BLANK("0") + Data(8bit) + BLANK("0").

Note: When SCLK is less than 27th clocks and/or BLANK is " 1 " instead of " 0 " after start detection, will not take in SDATA. When SCLK is higher than 28th clock track, start detection is confirmed, register address is incremented every 1byte (8bit) + BLANK ("0").

Data write examples into slave 82h

Register Map

After POR all registers are cleared.
Frequency and Color Temperature Registers

Addr.	Register	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Description	
00h	LEDR\&fPWM	F_PWM[2:0]					I_LEDR[2:0]			LEDR current setting (LEDR1 ~ LED8)	
							0	0	0	20\% of Imax	(6.4 mA @ RT = 30 k)
							0	0	1	31\% of Imax	(10.15 mA @ RT = 30 k)
							0	1	0	43\% of Imax	(13.90 mA @ RT = 30 k)
							0	1	1	54\% of Imax	(17.65 mA @ RT = 30 k)
							1	0	0	66\% of Imax	(21.15 mA @ RT = 30 k)
							1	0	1	77\% of Imax	(24.90 mA @ RT = 30 k)
							1	1	0	88\% of Imax	(28.65 mA @ RT = 30 k)
							1	1	1	Imax $=1.22 \times 800 / \mathrm{RT}$	(32.4 mA @ RT = 30 k)
		0	0	0						0.5 ms (PWM-Duty cycle time)	
		0	0	1						1.0 ms (PWM-Duty cycle time)	
		0	1	0						2.0 ms (PWM-Duty cycle time)	
		0	1	1						4.0 ms (PWM-Duty cycle time)	
		1	0	0						8.0 ms (PWM-Duty cycle time)	
01h	LEDG Current						I_LEDG[2:0]			LEDG current setting (LEDG1~LEDG8)	
							0	0	0	20\% of Imax	(6.4 mA @ RT = 30 k)
							0	0	1	31% of Imax	(10.15 mA @ RT = 30 k)
							0	1	0	43\% of Imax	(13.90 mA @ RT = 30 k)
							0	1	1	54\% of Imax	(17.65 mA @ RT = 30 k)
							1	0	0	66\% of Imax	(21.15 mA @ RT = 30 k)
							1	0	1	77\% of Imax	(24.90 mA @ RT = 30 k)
							1	1	0	88\% of Imax	(28.65 mA @ RT = 30 k)
							1	1	1	Imax = $1.22 \times 800 / \mathrm{RT}$ (32.4 mA @ RT $=30 \mathrm{k}$)	
02h	LEDB Current						I_LEDB[2:0]			LEDB current setting (LEDB1~8)	
							0	0	0	20\% of Imax (6.4 mA @ RT = 30 k)	
							0	0	1	31\% of Imax	(10.15 mA @ RT = 30 k)
							0	1	0	43\% of Imax	(13.90 mA @ RT = 30 k)
							0	1	1	54\% of Imax	(17.65 mA @ RT = 30 k)
							1	0	0	66\% of Imax	(21.15 mA @ RT = 30 k)
							1	0	1	77\% of Imax	(24.90 mA @ RT = 30 k)
							1	1	0	88\% of Imax	(28.65 mA @ RT = 30 k)
							1	1	1	Imax=1.22x800/RT	(32.4 mA @ RT = 30 k)

Luminance Registers

Addr.	Register	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Description
03h	PWM SEL LEDR	R8	R7	R6	R5	R4	R3	R2	R1	Select PWM or Full on for LEDR1 ~ LEDR8
										$0=$ Use PWM as set by the registers below. $1=\text { Full on }(100 \% \text { PWM })$
04h	PWM SEL LEDG	G8	G7	G6	G5	G4	G3	G2	G1	Select PWM or Full on for LEDG1 ~ LEDG8
										$0=$ Use PWM as set by the registers below. $1=\text { Full on (100\%PWM) }$
05h	PWM SEL LEDB	B8	B7	B6	B5	B4	B3	B2	B1	Select PWM or Full on for LEDB1 ~ LEDB8
										$0=$ Use PWM as set by the registers below. $1=\text { Full on }(100 \% \text { PWM })$
06h	LEDR1 Duty	R1[7]	R1[6]	R1[5]	R1[4]	R1[3]	R1[2]	R1[1]	R1[0]	PWM duty setting for LEDR1
		0	0	0	0	0	0	0	0	Duty(\%) = 0.0\%
		R1[7:0]								Duty(\%) = R1[7:0] / 256
		1	1	1	1	1	1	1	1	Duty(\%) = 99.6\%
07h	LEDG1 Duty	G1[7:0]								Same as LEDR1 description
08h	LEDB1 Duty	B1[7:0]								
09h	LEDR2 Duty	R2[7:0]								
OAh	LEDG2 Duty	G2[7:0]								
OBh	LEDB2 Duty	B2[7:0]								
0Ch	LEDR3 Duty	R3[7:0]								
0Dh	LEDG3 Duty	G3[7:0]								
OEh	LEDB3 Duty	B3[7:0]								
OFh	LEDR4 Duty	R4[7:0]								
10h	LEDG4 Duty	G4[7:0]								
11h	LEDB4 Duty	B4[7:0]								
12h	LEDR5 Duty	R5[7:0]								
13h	LEDG5 Duty	G5[7:0]								
14h	LEDB5 Duty	B5[7:0]								
15h	LEDR6 Duty	R6[7:0]								
16h	LEDG6 Duty	G6[7:0]								
17h	LEDB6 Duty	B6[7:0]								
18h	LEDR7 Duty	R7[7:0]								
19h	LEDG7 Duty	G7[7:0]								
1Ah	LEDB7 Duty	B7[7:0]								
1Bh	LEDR8 Duty	R8[7:0]								
1Ch	LEDG8 Duty	G8[7:0]								
1Dh	LEDB8 Duty	B8[7:0]								

LEDOUT Duty Cycle De-rating

All channels in switch mode(OUTSCT=H)
Note: In this case the LED current must be limited by external resistors!

All channels use internal current control (OUTSCT=L) Note: In this case the LED current must be limited by resistance of RT1. Furthermore, must manage it in

lo-Duty VOUT $=1.0 \mathrm{~V}$

register 00 h and 01 h and 02 h . and manage even the Duty setting.

Package Dimensions
unit : mm
TQFP48 EP 7x7, 0.5P
CASE 932F
ISSUE C

NOTES:

1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL BE 0.08 MAX. AT MMC. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07
4. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.25 PER SIDE. DIMENSIONS D1 AND E1 ARE MAXIMUM PLASTIC BODY SIZE INCLUDING MOLD MISMATCH.
5. THE TOP PACKAGE BODY SIZE MAY BE SMALLER THAN THE BOTTOM PACKAGE SIZE BY AS MUCH AS 0.15
DATUMS A-B AND D ARE DETERMINED AT DATUM PLANE H
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY DIMENSIONS D AND E TO BE DETERMINED AT DATUM PLANE C

	MILLIMETERS	
DIM	MIN	MAX
A	0.95	1.25
A1	0.05	0.15
A2	0.90	1.20
b	0.17	0.27
D	9.00	
BSC		
D1	7.00	
BSC		
D2	4.90	5.10
E	9.00	
BSC		
E1	7.00	
BSC		
E2	4.90	5.10
e	0.50	
BSC		
L	0.45	
L2	0.25	
BSC		
M	0.75	

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 ZXLD1370QESTTC MPQ7220GF-AEC1-P MPQ7220GR-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ7220GR-AEC1-Z MPQ4425BGJ-AEC1-Z IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR KTD2026BEWE-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 LYT4227E LYT6079C-TL MP3394SGF-P MP4689AGN-P MPQ4425AGQB-AEC1-Z

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

