LV56351HA

BI-CMOSIC 1ch DC/DC boost converter

Overview

LV56351HA integrates 1ch DC/DC boost converter and 1ch LDO. It is suitable as the power supply for BS/CS antennas of LCD/PDP TV and BD recorders that require automatic recovery without IC destruction and malfunction when the output is short-circuited.

Functions

[DC/DC boost converter]

- Soft-start time: 2.8ms
- Frequency 425kHz operation
- Pulse by pulse over current limiter
- Short circuit protector (SCP)

[LDO]

- Over current limiter (Fold back) [All]
- Under voltage lockout
- Thermal shutdown protector
- Power good

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter		Symbol	Conditions Ratings		Unit
V _{CC} maximum supply voltage		V _{CC} max	-0.	3 to 25	V
LDOIN maximum input voltage		V _{LDOIN} max	-0.	3 to 30	V
SW maximum voltage		V _{SW} max	-0.	3 to 30	V
Allowable power dissipation		Pd max	*1	1.45	W
Operating temperature		Topr	-30	to +85	°C
Operating junction temperature		Tjopr	-30 t	o +125	°C
Storage temperature		Tstg	-40 t	o +150	°C
Allowable V _{CC} , EN		•		25	V
pin voltage	SW, LDOIN, LDOOUT			30	V
	IN1, IN2, FB, SCP, PGOOD, DDCTL			6	V

*1 Mounted on a specified board : 32mm × 38mm × 1.6mm, glass epoxy, double side board.

Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

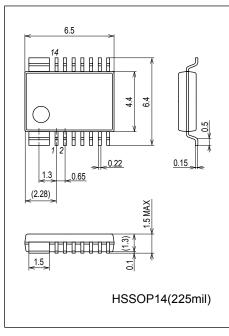
Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

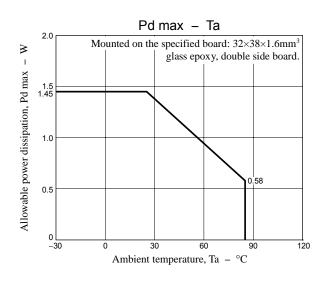
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

LV56351HA

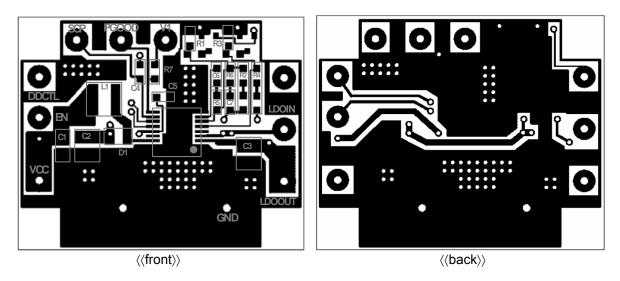
Recommended Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
V _{CC} supply voltage	V _{CC}		8 to 23	V
LDOIN input voltage	V _{LDOIN}		8 to 28	V
SW voltage	V _{SW}		-0.3 to 28	V
EN voltage	V _{EN}		0 to 23	V

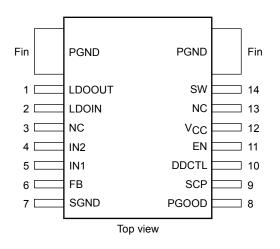

Electrical Characteristics at Ta = 25°C, V_{CC} = 12V, V_{EN} =2V, LDOIN=16V, LDOOUT=15V


Parameter	Symbol	Conditions	Ratings			Unit
Faidmeter			min	typ	max	Unit
All						
Supply current1	lcc	Switching is turned off		1.8	3.5	mA
Supply current2	IOFF	EN = 0V			10	μA
Reference voltage	V _{REF}		1.2348	1.26	1.2852	V
Enable voltage	V _{EN}		2.0			V
Disable voltage	V _{DIS}				0.4	V
EN input current	IEN	V _{EN} = 2.0V			10	μA
PGOOD threshold	VPG	IN1 ≥ VREF×85% and IN2 ≥ VREF×85%		VREF×0.85		V
PGOOD sink current	IPG	V _{PGOOD} = 0.5V		1.0		mA
PGOOD leak current	IPGLK	V _{PGOOD} = 2V			10	μA
UVLO on voltage	VUVLO			7.0		V
Thermal shutdown temperature	T _{TSD}	*2	130			°C
TSD hysteresis	T _{HYS}	*2		30		°C
DC/DC boost converter						
FB output voltage "Low"	FBLow	IN1 = 2.0V, I _{FB} = -20µA (Sink)			0.2	V
FB output voltage "High"	FB _{High}	IN1 = 0.2V, I _{FB} = 20µA (Source)	1.8			V
Soft-start time	T _{SS}			2.8		ms
Oscillator frequency	FOSC			425		kHz
Max on duty	D _{MAX}		78	85	92	%
SW on resistance	R _{ON}			0.7		Ω
SW peak current	IPK		1.5	1.8		А
SCP source current	ISCP			4.8		μA
SCP threshold	V _{SCP}			VREF		V
DDCTL on voltage	VDDCTLON	DC/DC Off	2.0			V
DDCTL off voltage	VDDCTLOFF	DC/DC On			0.4	V
DDCTL input current		V _{DDCTL} = 2V			20	μA
LDO						
Maximum output current	IOMAX		350	520	670	mA
Line regulation	R _{LN}	16V < LDOIN < 21V			20	mV
Load regulation	R _{LD}	10mA < I _O < 300mA			20	mV
Dropout voltage	V _{DROP}	I _O = 300mA		0.25	0.4	V
Short current	ISHORT	LDOOUT = GND			100	mA

*2: Design guarantee value.


Package Dimensions

unit : mm (typ) 3313A



Specified board (32mm × 38mm × 1.6mm, glass epoxy, double side board)

Pin function					
Pin No.	Pin name	Function	Equivalent circuit		
1 2 7	LDOOUT LDOIN SGND	LDO output LDO input Signal ground (*3)	2 LDOIN 2 LDOIN 1 LDOOUT 7 SGND		
4	IN2	LDO feedback input	IN2 (4) 10kΩ SGND (7) SGND (7)		
5	IN1	DC/DC error amplifier input	IN1 5 SGND 7		
6	FB	DC/DC error amplifier output	FB 6 1kΩ SGND 7		
8	PGOOD	Power good output	500Ω		
9	SCP	DC/DC SCP capacitor connect pin for timer setting	300Ω 2kΩ 9 SCP 7 SGND		
10	DDCTL	DC/DC on and off control	DDCTL 10 VREG		
11 12	EN V _{CC}	Enable Power supply	V _{CC} (12) EN (1) SGND (7)		

*3: When you use this IC, Please short-circuit all the pins of SGND and PGND on the IC mounting side.

Continued on next page.

Continued from preceding page.					
Pin No.	Pin name	Function	Equivalent circuit		
14	SW	DC/DC open drain output	VREG 14) SW		
Fin	PGND	Power ground (*3)			

*3: When you use this IC, Please short-circuit all the pins of SGND and PGND on the IC mounting side.

Function overview

(1) UVLO (Under Voltage Lockout)

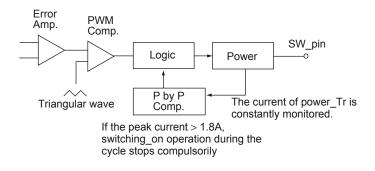
..

UVLO stops outputs of both DC/DC and LDO to prevent malfunction when V_{CC} decreases. UVLO operates when V_{CC} falls below the UVLO voltage. This function is a non-latch-type, and recovers these outputs automatically when V_{CC} exceeds the UVLO voltage.

(2) Power good

. 10

Power good notifies that the output voltages of DC/DC and LDO are within the range of the setting voltage. The two output voltages are monitored through the voltage of IN1 and IN2. The output is judged to be "power good" when both outputs are 85% or higher compared to the setting voltages. If either IN1 or IN2 voltage falls below VREF×85%, PGOOD output becomes $L \rightarrow H$ (No Good). When IN1 and IN2 voltages become (VREF×85%) + 30mV or higher, PGOOD output becomes $H \rightarrow L$ (Good). During soft start, the output is H (No Good).


 $\langle \langle Power \ good \ circuit \ diagram \rangle \rangle$

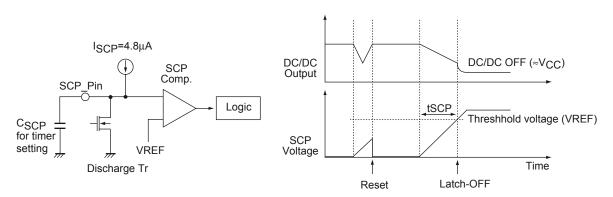
(3) Pulse-by-Pulse over current protection (P by P)

The P by P stops switch-on operation of a certain cycle by force when the current of power MOSFET reaches the maximum output peak current.

((P by P circuit diagram))

(4) Short Circuit Protector (SCP)

When output voltage of DC/DC decreases due to short-circuit; for example, SCP latches off the outputs of DC/DC and LDO by timer.


When output voltage of DC/DC decreases and FB turns to H, which is the error amplifier output, charge at $4.8\mu A$ constant current starts to SCP capacitor for timer setting. When SCP voltage exceeds the threshold voltage (=VREF), latch-off occurs. If the output voltage recovers until the time the SCP voltage reaches to the threshold voltage, SCP capacitor is discharged and timer is reset. To restart the output after latch-off, you need to input EN signal again. If you do not use the SCP function, make sure to short SCP and GND.

To define timer, you need to calculate a value of SCP capacitor using the following formula because timer (tSCP) depends on capacitance.

 $C_{SCP} = (I_{SCP} \times tSCP)/VREF$

((SCP circuit diagram))

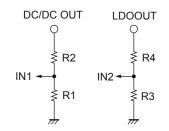
((Waveform of SCP_Pin))

(5) DC/DC on and off control

This function controls on and off of DC/DC during the operation of IC.

⟨⟨Turning on DC/DC⟩⟩

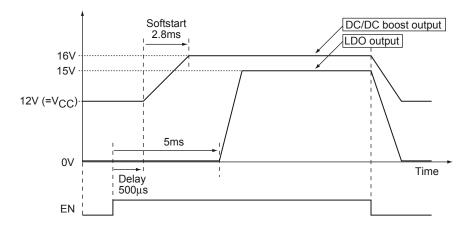
Where DDCTL = Low or open, DC/DC and LDO operate at the same time.


⟨⟨Turning off DC/DC⟩⟩

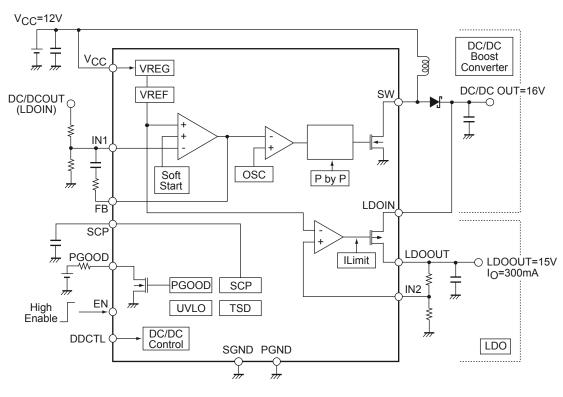
Where DDCTL = High, DC/DC is compulsorily stopped and only LDO operates.

When DDCTL is switched from H to L (or open), LDO stops temporarily and DC/DC starts with soft start and then LDO restart. If you switch DDCTL during IC operation, make sure that the output waveforms of DC/DC and LDO are normal.

Output voltage setting


Output voltages are given by the following formulas. $DCDCOUT = (1+R2/R1) \times VREF [V]$ $LDOOUT = (1+R4/R3) \times VREF [V]$ $\langle\langle \text{Resistance for output setting}\rangle\rangle$

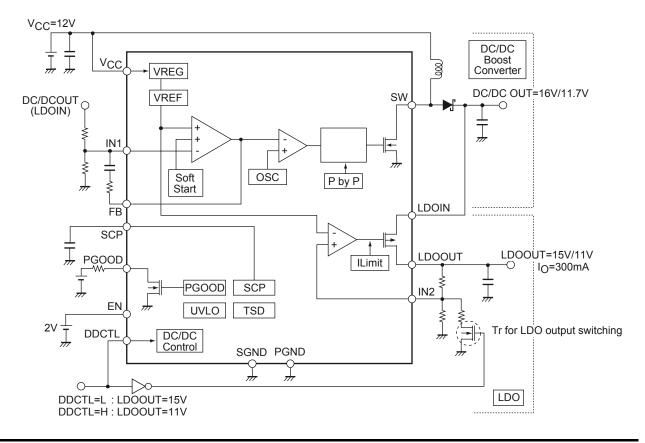
Start and stop


Start: Make sure to input EN signal (L \Rightarrow H) after supplying V_{CC} = 12V. Stop: Reverse-operation of start.

 $\langle\langle Output \ waveform \ during \ start \ and \ stop \rangle\rangle$

Block diagram and Application circuit 1 (for BS antenna)

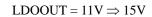
Condition: $V_{CC} = 12V$, DCDCOUT = 16V, LDOOUT = 15V

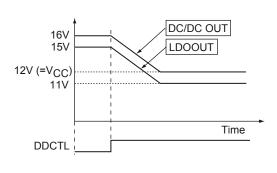


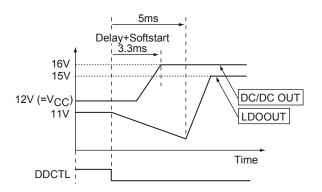
 $\langle \langle Note \rangle \rangle$

When LDOOUT is in the over current state or the short-circuit state, IC and external parts are protected by over current limiter of LDO. And when DC/DCOUT is short-circuited, IC stops by timer latch-off type SCP function.

Application circuit 2 (for BS/CS antenna)


BS condition: $V_{CC} = 12V$, DCDCOUT = 16V, LDOOUT = 15V CS condition: $V_{CC} = 12V$, DCDC = OFF, LDOOUT = 11V




 $\langle \langle Addition \rangle \rangle$

The above application circuit enables switching between 15V for BS and 11V for CS. Where DDCTL=L, DC/DC booster is turned on and set as follows: DC/DCOUT=16V, LDOOUT=15V Where DDCTL=H, DC/DC booster is turned off and set as follows: DC/DCOUT=11.7V, LDOOUT=11V (because the resistance value of output setting of LDO is switched)

$\langle \langle \text{Output waveform at switching} \rangle \rangle$ LDOOUT = 15V \Rightarrow 11V

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized upplication, Buyer shall indemnify and hold SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affimative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614 MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE#TRPBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6#TR LTC3803ES6#TRM LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM+ XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUX-CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1603-330IMC MCP1642B-18IMC MCP1642D-ADJIMC