LV56351HA

Bi-CMOS IC
1ch DC/DC boost converter

Overview

LV56351HA integrates 1ch DC/DC boost converter and 1ch LDO. It is suitable as the power supply for BS/CS antennas of LCD/PDP TV and BD recorders that require automatic recovery without IC destruction and malfunction when the output is short-circuited.

Functions

[DC/DC boost converter]

- Soft-start time: 2.8ms
- Frequency 425 kHz operation
- Pulse by pulse over current limiter
- Short circuit protector (SCP)
[LDO]
- Over current limiter (Fold back)
[All]
- Under voltage lockout
- Thermal shutdown protector
- Power good

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter		Symbol	Conditions	Ratings	Unit
$\mathrm{V}_{\text {CC }}$ maximum supply voltage		$\mathrm{V}_{\text {CC }}$ max		-0.3 to 25	V
LDOIN maximum input voltage		$V_{\text {LDOIN }}$ max		-0.3 to 30	V
SW maximum voltage		$V_{\text {SW }}$ max		-0.3 to 30	V
Allowable power dissipation		Pd max	*1	1.45	W
Operating temperature		Topr		-30 to +85	${ }^{\circ} \mathrm{C}$
Operating junction temperature		Tjopr		-30 to +125	${ }^{\circ} \mathrm{C}$
Storage temperature		Tstg		-40 to +150	${ }^{\circ} \mathrm{C}$
Allowable pin voltage	$\mathrm{V}_{\text {CC }}$, EN			25	V
	SW, LDOIN, LDOOUT			30	V
	IN1, IN2, FB, SCP, PGOOD, DDCTL			6	V

*1 Mounted on a specified board : $32 \mathrm{~mm} \times 38 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, glass epoxy, double side board.
Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.
Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

LV56351HA
Recommended Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
$V_{\text {CC }}$ supply voltage	$V_{\text {CC }}$		8 to 23	V
LDOIN input voltage	$V_{\text {LDOIN }}$		8 to 28	V
SW voltage	$V_{\text {SW }}$	$V_{\text {EN }}$		-0.3 to 28
EN voltage		V		

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2 \mathrm{~V}$, LDOIN $=16 \mathrm{~V}$, LDOOUT $=15 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
All						
Supply current1	${ }^{\text {I CC }}$	Switching is turned off		1.8	3.5	mA
Supply current2	IOFF	$\mathrm{EN}=0 \mathrm{~V}$			10	$\mu \mathrm{A}$
Reference voltage	$V_{\text {REF }}$		1.2348	1.26	1.2852	V
Enable voltage	$V_{\text {EN }}$		2.0			V
Disable voltage	$\mathrm{V}_{\text {DIS }}$				0.4	V
EN input current	IEN	$\mathrm{V}_{\mathrm{EN}}=2.0 \mathrm{~V}$			10	$\mu \mathrm{A}$
PGOOD threshold	VPG	IN1 \geq VREF $\times 85 \%$ and IN2 \geq VREF $\times 85 \%$		VREF×0.85		V
PGOOD sink current	IPG	$\mathrm{V}_{\mathrm{PGOOD}}=0.5 \mathrm{~V}$		1.0		mA
PGOOD leak current	IPGLK	$\mathrm{V}_{\text {PGOOD }}=2 \mathrm{~V}$			10	$\mu \mathrm{A}$
UVLO on voltage	VUVLO			7.0		V
Thermal shutdown temperature	TTSD	*2	130			${ }^{\circ} \mathrm{C}$
TSD hysteresis	$\mathrm{T}_{\mathrm{HYS}}$	*2		30		${ }^{\circ} \mathrm{C}$
DC/DC boost converter						
FB output voltage "Low"	$\mathrm{FB}_{\text {Low }}$	$\mathrm{IN} 1=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{FB}}=-20 \mu \mathrm{~A}$ (Sink)			0.2	V
FB output voltage "High"	$\mathrm{FB}_{\text {High }}$	$\mathrm{IN} 1=0.2 \mathrm{~V}, \mathrm{I}_{\text {FB }}=20 \mu \mathrm{~A}$ (Source)	1.8			V
Soft-start time	TSS			2.8		ms
Oscillator frequency	Fosc			425		kHz
Max on duty	$\mathrm{D}_{\text {MAX }}$		78	85	92	\%
SW on resistance	$\mathrm{R}_{\text {ON }}$			0.7		Ω
SW peak current	${ }^{\text {IPK }}$		1.5	1.8		A
SCP source current	ISCP			4.8		$\mu \mathrm{A}$
SCP threshold	$\mathrm{V}_{\text {SCP }}$			VREF		V
DDCTL on voltage	$V_{\text {DDCTLON }}$	DC/DC Off	2.0			V
DDCTL off voltage	$V_{\text {DDCTLOFF }}$	DC/DC On			0.4	V
DDCTL input current	IDDCTL	$\mathrm{V}_{\text {DDCTL }}=2 \mathrm{~V}$			20	$\mu \mathrm{A}$
LDO						
Maximum output current	IOMAX		350	520	670	mA
Line regulation	R LN	16 V < LDOIN < 21V			20	mV
Load regulation	R_{LD}	$10 \mathrm{~mA}<\mathrm{l}_{\mathrm{O}}<300 \mathrm{~mA}$			20	mV
Dropout voltage	V ${ }_{\text {DROP }}$	$\mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA}$		0.25	0.4	V
Short current	ISHORT	LDOOUT = GND			100	mA

[^0]
Package Dimensions

unit ：mm（typ）

3313A

Pd max－Ta

Specified board（ $32 \mathrm{~mm} \times 38 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ ，glass epoxy，double side board）

〈〈front〉〉

〈〈back〉〉

Pin assignment

Top view

LV56351HA
Pin function

Pin No.	Pin name	Function	Equivalent circuit
$\begin{aligned} & 1 \\ & 2 \\ & 7 \end{aligned}$	LDOOUT LDOIN SGND	LDO output LDO input Signal ground (*3)	
4	IN2	LDO feedback input	
5	IN1	DC/DC error amplifier input	
6	FB	DC/DC error amplifier output	
8	PGOOD	Power good output	
9	SCP	DC/DC SCP capacitor connect pin for timer setting	
10	DDCTL	DC/DC on and off control	
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{EN} \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	Enable Power supply	

[^1]Continued from preceding page．

Pin No．	Pin name	Function	Equivalent circuit
14	SW	DC／DC open drain output	Power ground（＊3）
Fin	PGND		

＊3：When you use this IC，Please short－circuit all the pins of SGND and PGND on the IC mounting side

Function overview

（1）UVLO（Under Voltage Lockout）
UVLO stops outputs of both DC／DC and LDO to prevent malfunction when V_{CC} decreases．UVLO operates when ${ }^{\text {CC }}$ falls below the UVLO voltage．This function is a non－latch－type，and recovers these outputs automatically when $V_{\text {CC }}$ exceeds the UVLO voltage．

（2）Power good

Power good notifies that the output voltages of DC／DC and LDO are within the range of the setting voltage．The two output voltages are monitored through the voltage of IN1 and IN2．The output is judged to be＂power good＂when both outputs are 85% or higher compared to the setting voltages．If either IN1 or IN2 voltage falls below VREF $\times 85 \%$ ，
PGOOD output becomes $\mathrm{L} \rightarrow \mathrm{H}$（No Good）．When IN1 and IN2 voltages become（VREF $\times 85 \%$ ）＋30mV or higher， PGOOD output becomes $\mathrm{H} \rightarrow \mathrm{L}$（Good）．During soft start，the output is H（No Good）．

〈〈Power good circuit diagram〉〉

（3）Pulse－by－Pulse over current protection（P by P）
The P by P stops switch－on operation of a certain cycle by force when the current of power MOSFET reaches the maximum output peak current．
$\langle\langle\mathrm{P}$ by P circuit diagram $\rangle\rangle$

If the peak current＞1．8A，
switching＿on operation during the cycle stops compulsorily
（4）Short Circuit Protector（SCP）
When output voltage of DC／DC decreases due to short－circuit；for example，SCP latches off the outputs of DC／DC and LDO by timer．
When output voltage of DC／DC decreases and FB turns to H ，which is the error amplifier output，charge at $4.8 \mu \mathrm{~A}$ constant current starts to SCP capacitor for timer setting．When SCP voltage exceeds the threshold voltage（＝VREF）， latch－off occurs．If the output voltage recovers until the time the SCP voltage reaches to the threshold voltage，SCP capacitor is discharged and timer is reset．To restart the output after latch－off，you need to input EN signal again．If you do not use the SCP function，make sure to short SCP and GND．
To define timer，you need to calculate a value of SCP capacitor using the following formula because timer（tSCP） depends on capacitance．

$$
\text { CSCP }=(\mathrm{ISCP} \times \mathrm{tSCP}) / \mathrm{VREF}
$$

〈〈Waveform of SCP＿Pin〉〉

（5） $\mathrm{DC} / \mathrm{DC}$ on and off control
This function controls on and off of DC／DC during the operation of IC．
〈〈Turning on DC／DC〉〉
Where DDCTL＝Low or open，DC／DC and LDO operate at the same time．
$\langle\langle$ Turning off DC／DC〉〉
Where DDCTL＝High，DC／DC is compulsorily stopped and only LDO operates．
When DDCTL is switched from H to L（or open），LDO stops temporarily and DC／DC starts with soft start and then LDO restart．If you switch DDCTL during IC operation，make sure that the output waveforms of DC／DC and LDO are normal．

Output voltage setting

Output voltages are given by the following formulas．〈〈Resistance for output setting〉〉
DCDCOUT $=(1+\mathrm{R} 2 / \mathrm{R} 1) \times$ VREF［V］ LDOOUT $=(1+\mathrm{R} 4 / \mathrm{R} 3) \times$ VREF［V］

Start and stop

Start：Make sure to input EN signal $(\mathrm{L} \Rightarrow \mathrm{H})$ after supplying $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$ ．
Stop：Reverse－operation of start．

〈〈Output waveform during start and stop〉〉

LV56351HA
Block diagram and Application circuit 1 （for BS antenna）
Condition： $\mathrm{VCC}_{\mathrm{C}}=12 \mathrm{~V}, \mathrm{DCDCOUT}=16 \mathrm{~V}$, LDOOUT $=15 \mathrm{~V}$

〈〈Note〉〉
When LDOOUT is in the over current state or the short－circuit state，IC and external parts are protected by over current limiter of LDO．And when DC／DCOUT is short－circuited，IC stops by timer latch－off type SCP function．

Application circuit 2 （for BS／CS antenna）

BS condition： $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$ ，DCDCOUT $=16 \mathrm{~V}$, LDOOUT $=15 \mathrm{~V}$
CS condition： $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{DCDC}=\mathrm{OFF}$, LDOOUT $=11 \mathrm{~V}$

〈〈Addition〉〉

The above application circuit enables switching between 15 V for BS and 11 V for CS．
Where DDCTL＝L，DC／DC booster is turned on and set as follows： $\mathrm{DC} / \mathrm{DCOUT}=16 \mathrm{~V}$ ，LDOOUT $=15 \mathrm{~V}$ Where DDCTL＝H，DC／DC booster is turned off and set as follows：DC／DCOUT＝11．7V，LDOOUT＝11V （because the resistance value of output setting of LDO is switched）

〈〈Output waveform at switching〉〉

$$
\text { LDOOUT }=15 \mathrm{~V} \Rightarrow 11 \mathrm{~V}
$$

LDOOUT $=11 \mathrm{~V} \Rightarrow 15 \mathrm{~V}$
 as components in systems intended for surgical implant into the body，or other applications intended to support or sustain life，or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur．Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application，Buyer shall indemnify and hold SCILLC and its officers，employees，subsidiaries，affiliates，and distributors harmless against all claims，costs，damages，and expenses，and reasonable attorney fees arising out of，directly or indirectly，any claim of personal injury or death associated with such unintended or unauthorized use，even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part．SCILLC is an Equal Opportunity／Affirmative Action Employer．This literature is subject to all applicable copyright laws and is not for resale in any manner．

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1712-3.3-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP21021.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV

[^0]: *2: Design guarantee value.

[^1]: *3: When you use this IC, Please short-circuit all the pins of SGND and PGND on the IC mounting side

