LV5682P

BI-CMOS LSI Multi-Power Supply System IC for Car Audio Systems

The LV5682P is a multi-power supply system IC that provides four regulator outputs and two high side switches as well as a number of protection functions including overcurrent protection and overheat protection. It is an optimal power supply IC for car audio and car entertainment systems and similar products. It is possible to use it like the bus track etc. in the vehicle whose voltage of the battery is 24V because there is a range of the power-supply voltage up to 32V.

Features

• Four regulator output systems

For microcontroller: 5.0V output voltage, 200mA maximum output current

For CD drive: 8.0V output voltage, 1300mA maximum output current

For illumination: 8 to 12V output voltage (output can be set with external resistors), 300mA maximum output current For audio systems: 8 to 9V output voltage (output voltage can be set with external resistors), 300mA maximum output current

• Two V_{CC}-linked high side switch systems

EXT: 350mA maximum output current, 0.5V voltage difference between input and output.

- ANT: 300mA maximum output current, 0.5V voltage difference between input and output.
- \bullet Two VDD 5V-linked high side switch systems

SW5V: 200mA maximum output current, 0.2V voltage difference between input and output.

ACC (accessory voltage detection output): 100mA maximum output current, 0.2V voltage difference between input and output.

- Overcurrent protection function
- Overheat protection function, typ 175°C
- On-chip accessory voltage detection circuit
- P-channel LDMOS used for power output block

(Warning) The protector functions only improve the IC's tolerance and they do not guarantee the safety of the IC if used under the conditions out of safety range or ratings. Use of the IC such as use under overcurrent protection range or thermal shutdown state may degrade the IC's reliability and eventually damage the IC.

HZIP25

ORDERING INFORMATION

See detailed ordering and shipping information on page 15 of this data sheet.

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Conditions	Conditions		Ratings	Unit
Supply voltage	V _{CC} max			36	V
Allowable Power dissipation	Pd max	Independent IC	Ta ≤ 25°C	2.7	W
		With an infinity heat sink		65	W
Peak supply voltage	V _{CC} peak	Each output is a no load.		50	V
		See below for the waveform app	olied.		
Junction temperature	Tj max			150	°C
Operating ambient temperature	Topr			-40 to +85	°C
Storage temperature	Tstg			-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating range at Ta = 25°C

Parameter	Conditions	Ratings	Unit
Operating supply voltage 1	$V_{\mbox{DD}}$ output, SW output and ACC output total current $\leq 0.5 \mbox{A}$	7.5 to 30	V
	$V_{\mbox{DD}}$ output, SW output and ACC output total current $\leq 0.4 \mbox{A}$	7.5 to 32	V
Operating supply voltage 2	ILM output at 10V	12 to 32	V
	ILM output at 8V	10 to 32	V
Operating supply voltage 3	Audio output at 9V	10 to 32	V
Operating supply voltage 4	CD output (CD output current \leq 1.3A)	10.5 to 24	V
	CD output (CD output current \leq 0.7A)	10 to 32	V

* The area of safe operation of each output is shown in P13-15. Please perform a set design based on an area of safe operation.

Electrical Characteristics at $V_{CC} = 24V$, Ta = 25°C (*1)

Devenuetor	Ourseland	Conditions	Ratings			Linit
Parameter	Symbol	Conditions	min	typ	max	Unit
Current drain	ICC	V_{DD} no load, CTRL1/2 = $[L/L]$, ACC = 0V		400	800	μA
CTRL1 Input						
Low input voltage	V _{IL} 1		0		0.5	V
M1 input voltage	V _{IM1} 1		0.8	1.1	1.4	V
M2 input voltage	V _{IM2} 1		1.9	2.2	2.5	V
High input voltage	V _{IH} 1		2.9	3.3	5.5	V
Input impedance	R _{IH} 1		350	500	650	kΩ
CTRL2 Input						
Low input voltage	V _{IL} 2		0		0.5	V
M input voltage	V _{IM} 2		1.1	1.65	2.1	V
High input voltage	V _{IH} 2		2.5	3.3	5.5	V
Input impedance	R _{IH} 2		350	500	650	kΩ
V _{DD} 5V Output *2		The V _{DD} 5V output sup	olies the outp	out currents o	of SW 5V and	ACC 5V.
Output voltage 1	V _O 1	I _O 1 = 200mA, I _O 7, I _O 8 = 0A	4.75	5.0	5.25	V
Output voltage 2	V _O 1'	I _O 1 = 200mA, I _O 7 = 200mA, I _O 8 = 100mA	4.75	5.0	5.25	V
Output total current	lto1	$V_{O}1 \ge 4.75V$, Ito1 = I_O1+I_O7+I_O8	500			mA
Line regulation	ΔV_{OLN} 1	$22V < V_{CC} < 32V, I_{O}1 = 200mA *3$		30	90	mV
Load regulation	ΔV_{OLD} 1	1mA < I _O 1 < 200mA *3		70	150	mV
Dropout voltage 1	V _{DROP} 1	I _O 1 = 200mA *3		1.0	1.5	V
Dropout voltage 2	V _{DROP} 1'	I _O 1 = 100mA *3		0.7	1.05	V
Dropout voltage 3	V _{DROP} 1"	I _O 1+I _O 7+I _O 8 = 500mA		2.5	3.75	V
Ripple rejection	R _{REJ} 1	f = 120Hz, I _O 1 = 200mA *3	40	50		dB

*1: All the specifications are provided for by the test by the fact that Tj(=25°C) is almost equal. To suppress the rise of Tj in the joint part temperature as much as possible, it tests by the pulse loading.

*2 : The V_{DD} 5V output also supplies the output currents of SW 5V and ACC 5V. Therefore, the current supply capability of the V_{DD} 5V output and its other electrical characteristics are affected by the output statuses of SW 5V and ACC 5V.

*3 : SW 5V and ACC 5V are not subject to a load.

LV5682P

Continued from preceding page.	1					
Parameter	Symbol	Conditions		Ratings		Unit
			min	typ	max	
CD Output ; CTRL2 = H	1	1				[
Output voltage	V _O 2	I _O 2 = 1000mA	7.6	8.0	8.4	V
Output current	1 ₀ 2	$V_0^2 \ge 7.6V$	1300			mA
Line regulation	ΔV_{OLN}^2	$22V < V_{CC} < 32V, I_{O}2 = 1000 \text{mA}$		50	100	mV
Load regulation	ΔV_{OLD}^2	10mA < I _O 2 < 1000mA		100	200	mV
Dropout voltage 1	VDROP ²	I _O 2 = 1000mA		1.0	1.5	V
Dropout voltage 2	V _{DROP} 2'	I _O 2 = 500mA		0.5	0.75	V
Ripple rejection	R _{REJ} 2	f = 120Hz, I _O 2 = 1000mA	40	50		dB
AUDIO (8-9V) Output ; CTRL2 =	м					
AUDIO_F pin voltage	V _I 3		1.222	1.260	1.298	V
AUDIO_F pin inflow current	I _{IN} 3		-1		1	μA
AUDIO output voltage 1	V _O 3	$I_03 = 200$ mA, R2 = 30 k Ω , R3 = 5.6 k Ω *4	7.65	8.0	8.35	V
AUDIO output voltage 2	V _O 3'	I _O 3 = 200mA, R2 = 27kΩ, R3 = 4.7kΩ *4	8.13	8.5	8.87	V
AUDIO output voltage 3	V _O 3"	I _O 3 = 200mA, R2 = 24kΩ, R3 = 3.9kΩ *4	8.6	9.0	9.4	V
AUDIO output current	I _O 3		300			mA
Line regulation	∆V _{OLN} 3	22V < V _{CC} < 32V, I _O 3 = 200mA		30	90	mV
Load regulation		1mA < I _O 3 < 200mA		70	150	mV
Dropout voltage 1	VDROP3	I _O 3 = 200mA		0.3	0.45	V
Dropout voltage 2	VDROP ³	I _O 3 = 100mA		0.15	0.23	V
Ripple rejection	R _{RF} 3	f = 120Hz, I _O 3 = 200mA	40	50		dB
ILM (8-12V) Output ; CTRL1 = M	1					
ILM F pin voltage	VI4		1.222	1.260	1.298	V
ILM output voltage 1	V ₀ 4	$I_{O}4 = 200 \text{mA}$	11.4	12.0	12.6	V
ILM output voltage 2	V04'	$l_04 = 200$ mA. B1 = 270k Ω *5	8.5	10.0	11.5	V
ILM output voltage 3	Vo4"	$l_{04} = 200 \text{mA}, \text{R1} = 100 \text{k}\Omega \times 5$	6.8	8.0	9.2	V
ILM output current	104	R1 = 270kΩ	300			mA
Line regulation		$22V \le V_{CC} \le 32V$ lo4 = 200mA		30	90	mV
Load regulation		1mA < Io4 < 200mA		70	150	mV
Dropout voltage 1	Vppop4	lo4 = 200mA		0.7	1.05	V
Dropout voltage 2	VDDOD4'	$l_{04} = 100 \text{mA}$		0.35	0.53	V
Ripple rejection	RDF 14	f = 120Hz lo4 = 200mA	40	50	0.00	dB
Remoto (FXT) · CTRI 1 = [M2]	"KEJ"	1 - 120112, 101 - 2001111	10	00		uD
	Vo5	105 - 350mA	Vcc-1.0	V00-0 5		V
	105	$V_{05} \ge V_{00} - 10$	350	۰رر ۵.۵		mΔ
ANT remoto : CTRI 1 - [H]	100		000			110.0
	Ve6	106 - 300mA	Vec 1.0	Vac 0.5		V
	106		300	VCC-0.3		v mA
SW 5V Output : CTPL 2 - [M]	100	V002 VCC-1.0	500			ША
	\/o7	$1 = 7 - 1 = 0.1 = 0.00 \times 10^{-1}$	Va1025	\/~1		V
	V07	107 = 1114, 101, 108 = 04.6	V01-0.25	V-102		V
	VO/	107 = 200MA, 101, 108 = 0A 6	VO1-0.45	v01-0.2		V
		vO1 ≥ 4.99	200			MA
				2.0		14
	VTH ^o		2.8	3.0	3.2	V
	VHIS ⁸		0.2	0.3	0.4	V
Input impedance	Z18	(Pull-down resistance internal)	42	60	78	kΩ
ACC output voltage 1	V08	$I_{O8} = 0.5 \text{mA}, I_{O1}, I_{O7} = 0 \text{A} * 6$	V _O 1-0.25	V _O 1		V
ACC output voltage 2	VO8,	I _O 8 = 100mA, I _O 1, I _O 7 = 0A *6	V _O 1-0.45	V _O 1-0.2		V
ACC output voltage	1 ⁰⁸	$V_{O}8 \ge 4.55$	100			mA

*4 : When a component with a resistance accuracy of $\pm 1\%$ is used

<Reference> When a component with a resistance accuracy of $\pm 0.5\%$ is used, V_O3" is 8.67V $\leq 9.0V \leq 9.33V.$

*5 : When a component with a resistance accuracy of $\pm 1\%$ is used

The absolute accuracy of the internal resistance is $\pm 15\%$.

 *6 : Since the SW 5V and ACC 5V are output from V_{DD} 5V through the SW, the voltage drops by an amount equivalent to the ON resistance of the SW.

Package Dimensions

unit : mm (typ)

• Allowable power dissipation derating curve

• Waveform applied during surge test

Block Diagram

Pin Function

Pin No.	Pin name	Description	Equivalent Circuit
1 to 4	N.C.	-	-
5	ILM	ILM output pin ON when CTRL1 = M1, M2, H 12.0V/300mA	
6	ILM_F	ILM output voltage adjustment pin	$\begin{array}{c} & & & \\ \hline \\ \hline$

Continued on next page.

Continued fi	rom preceding pa	ge.	
Pin No.	Pin name	Description	Equivalent Circuit
7	CD	CD output pin ON when CTRL2 = M, H 8.0V/1.3A	$\begin{array}{c} 12 \\ \hline \\ $
8	AUDIO_F	AUIDO output voltage adjustment pin	
9	N.C.	-	
10	AUDIO	AUDIO output pin ON when CTRL2 = M, H	
11	CTRL2	CTRL2 input pin three-value input	$12 \rightarrow Vcc$
12	V _{CC}	Supply terminal	
13	CTRL1	CTRL1 input pin four-value input	$\begin{array}{c} 12 \\ \hline 12 \\ \hline \\ $
14	GND	GND pin	

Continued on next page.

Continued fr	om preceding pag	ge.	
Pin No.	Pin name	Description	Equivalent Circuit
15	ACC	Accessory input	$12 \qquad Vcc$ $15 \qquad 45k\Omega \qquad F \qquad F \qquad Vcc$ $15 \qquad 45k\Omega \qquad F \qquad $
16	ACC5V	Accessory detection output ON when ACC > 3V	
17	V _{DD} 5V	V _{DD} 5V output pin 5.0V/200mA	
18	N.C.	-	┨────┤┤│ ┦╫ <u>┊</u> ┝──┿┿┽ <u>Ҁ</u> ╶ <u></u> ┠╌╝╴│
19	SW5V	SW5V output pin ON when CTRL2 = M, H	$\begin{array}{c} (19) \\ \hline \\ \hline \\ \hline \\ \hline \\ 14 \end{array} \\ \hline \\$
20	ANT	ANT output pin ON when CTRL1 = H V _{CC} -0.5V/300mA	$\begin{array}{c} 12 \\ \hline \\ 20 \\ \hline \\ 14 \\ \hline \\ 14 \\ \hline \\ 12 \\ \hline \\ $
21	EXT	EXT output pin ON when CTRL1 = M2, H V _{CC} -0.5V/350mA	
22 to 25	N.C.	-	

CTRL Pin Output Truth Table

	-		
CTRL1	ANT	EXT	ILM
L	OFF	OFF	OFF
M1	OFF	OFF	ON
M2	OFF	ON	ON
Н	ON	ON	ON

CTRL2	CD	AUDIO	SW5
L	OFF	OFF	OFF
М	OFF	ON	ON
Н	ON	ON	ON

Timing Chart

Recommended Operation Circuit

Peripheral parts list

Name of part	Description	Recommended value	Remarks
C1	Power supply bypass capacitor	100µF or more	These capacitors must be placed near
C2	Oscillation prevention capacitor	0.22µF or more	the V_{CC} and GND pins.
C3	EXT output stabilization capacitor	2.2µF or more	
C4	ANT output stabilization capacitor	2.2µF or more	
C6, C9, C11, C13	Output stabilization capacitor	$4.7\mu F$ or more	Electrolytic capacitor *
C7, C10, C12, C14	Output stabilization capacitor	0.22µF or more	Ceramic capacitor *
R1	Resistor for ILM voltage adjustment	ILM output voltage R1:without = $12.0V$ $:270k\Omega = 10.0V$	A resistor with resistance accuracy as low as less than $\pm 1\%$ must be used.
R2, R3	Resistor for AUDIO voltage setting	R2/R3:30kΩ/5.6kΩ = 8.0V :27kΩ/4.7kΩ = 8.5V :24kΩ/3.9kΩ = 9.0V	A resistor with resistance accuracy as low as less than $\pm 1\%$ must be used.
D1, D2, D3, D4	Diode for internal device breakdown protection		Recommendation: SBD1003M3(30V/1.0A)

*: In order to stabilize the regulator outputs, it is recommended that the electrolytic capacitor and ceramic capacitor be connected in parallel.

Moreover, the above-mentioned value doesn't guarantee the operation stability in use and the overcurrent protection operation by I_Omax or more of the regulator. Therefore, there is a possibility of oscillating by use conditions.

• ILM output voltage setting method

The ILM_F voltage is determined by the internal band gap voltage of the IC (typ = 1.26V).

Formula for ILM voltage calculation

$$Z_{1} = R_{2} / / R_{3} = \frac{R_{2} \cdot R_{3}}{R_{2} + R_{3}}$$
$$ILM = \frac{1.26[V]}{R_{1}} \times Z_{1} + 1.26[V]$$
$$Z_{1} = \frac{(ILM - 1.26) \cdot R_{1}}{1.26} \qquad R_{3} = \frac{R_{2} \cdot Z_{1}}{R_{2} - Z_{1}}$$

Example : ILM = 9V setting method

$$Z_{1} = \frac{(9V - 1.26V) \cdot 7k\Omega}{1.26V} \cong 43k\Omega$$
$$R_{3} = \frac{59.67k\Omega \cdot 43k\Omega}{59.67k\Omega - 43k\Omega} \cong 153.9k\Omega \rightarrow 150k\Omega$$

When R3 = 150k, the ILM output voltage will be as follows:

$$Z_{1}' = \frac{59.67k\Omega \cdot 150k\Omega}{59.67k\Omega + 150k\Omega} \cong 42.69k\Omega$$
$$ILM = \frac{1.26V}{7k\Omega} \times 42.69k\Omega + 1.26V \cong \boxed{8.94V}$$

• AUDIO output voltage setting method

The AUDIO_F voltage is determined by the internal band gap voltage of the IC (typ = 1.26V).

Formula for AUDIO voltage calculation

$$AUDIO = \frac{1.26[V]}{R_2} \times R_1 + 1.26[V]$$
$$\frac{R_1}{R_2} = \frac{(AUDIO - 1.26)}{1.26}$$

The circuit must be designed in such a way that the R1:R2 ratio satisfies the formula given above for the AUDIO voltage that has been set.

]

Example : AUDIO = 8.5V setting method

$$\frac{R_1}{R_2} = \frac{(8.5 - 1.26)}{1.26} \cong 5.75$$
$$\frac{R_1}{R_2} = \frac{27k\Omega}{4.7k\Omega} \cong 5.74$$
$$AUDIO = 1.26V \times 5.74 + 1.26V \cong 8.49V$$

Note : In the above, the typical values are given in all instances for the values used and, as such, they will vary due to the effects of production-related variations of the IC and external resistors.

CTRL1 Application Circuit Example

(1)	(1) 3.3V input: $R1 = 4.7k\Omega$, $R2 = 10k\Omega$				
	А	В	CTRL1		
	0V	0V	0V		
	0V	3.3V	1.05V		
	3.3V	0V	2.23V		
	3.3V	3.3V	3.20V		

CTRL2 Application Circuit Example

(1) 3.3V input: $R3 = R4 = 4.7k\Omega$

А	В	CTRL2
0V	0V	0V
0V	3.3V	1.61V
3.3V	0V	1.61V
3.3V	3.3V	3.29V
	A 0V 0V 3.3V 3.3V	A B 0V 0V 0V 3.3V 3.3V 0V 3.3V 3.3V

HZIP25 Heat sink attachment

Heat sinks are used to lower the semiconductor device junction temperature by leading the head generated by the device to the outer environment and dissipating that heat.

- a. Unless otherwise specified, for power ICs with tabs and power ICs with attached heat sinks, solder must not be applied to the heat sink or tabs.
- b. Heat sink attachment
 - \cdot Use flat-head screws to attach heat sinks.
 - \cdot Use also washer to protect the package.
 - \cdot Use tightening torques in the ranges 39-59Ncm(4-6kgcm).
 - If tapping screws are used, do not use screws with a diameter larger than the holes in the semiconductor device itself.
 - Do not make gap, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
 - Take care a position of via hole .
 - Do not allow dirt, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
 - · Verify that there are no press burrs or screw-hole burrs on the heat sink.
 - · Warping in heat sinks and printed circuit boards must be no more than
 - 0.05 mm between screw holes, for either concave or convex warping.
 - · Twisting must be limited to under 0.05 mm.
 - · Heat sink and semiconductor device are mounted in parallel.
 - Take care of electric or compressed air drivers
 - The speed of these torque wrenches should never exceed 700 rpm, and should typically be about 400 rpm.
- c. Silicone grease
 - · Spread the silicone grease evenly when mounting heat sinks.
 - · Recommends YG-6260 (Momentive Performance Materials Japan LLC)
- d. Mount
 - · First mount the heat sink on the semiconductor device, and then mount that assembly on the printed circuit board.
 - When attaching a heat sink after mounting a semiconductor device into the printed circuit board, when tightening up a heat sink with the screw, the mechanical stress which is impossible to the semiconductor device and the pin doesn't hang.
- e. When mounting the semiconductor device to the heat sink using jigs, etc.,
 - Take care not to allow the device to ride onto the jig or positioning dowel.
 - · Design the jig so that no unreasonable mechanical stress is not applied to the semiconductor device.
- f. Heat sink screw holes
 - · Be sure that chamfering and shear drop of heat sinks must not be larger than the diameter of screw head used.
 - When using nuts, do not make the heat sink hole diameters larger than the diameter of the head of the screws used. A hole diameter about 15% larger than the diameter of the screw is desirable.
 - \cdot When tap screws are used, be sure that the diameter of the holes in the heat sink are not too small. A diameter about 15% smaller than the diameter of the screw is desirable.
- g. There is a method to mount the semiconductor device to the heat sink by using a spring band. But this method is not recommended because of possible displacement due to fluctuation of the spring force with time or vibration.

Caution for usage

When allowablepower dissipation and power supply voltage exceed absolute maximum ratings or depends on usage conditions, LV5682P may be destroyed before Thermal Shut Down circuit operates.

Particularly caution is required for CD output. CD output can output high current and power dissipation is high. Therefore, when electric potential of VCC is high, a risk for IC destruction increases. The following diagram dhows Area of Safety Operation (ASO) CD output under the TYP conditions. However, it omly shows the case where CD output is used independently. IC destruction may occur due to usage conditions in your system or manufacturing process of the IC. Therefore, your system should be designed with margin for a practical usage.

*CD output is used independently with board and without heatsink

Other channel of Area of Safety Operation (ASO)

*Characteristics of output current vs. output voltage (output pin).

Evalution is performed with pulse load so that Tj and Ta become almost equal. Also, the following shows typical characteristics with a standard sample. Characteristics may fluctuate depends on IC manufacturing process.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV5682P-E	HZIP25 (Pb-Free)	15 / Fan-Fold

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management Specialised - PMIC category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

LV5686PVC-XH FAN7710VN NCP391FCALT2G SLG7NT4081VTR SLG7NT4192VTR AP4313UKTR-G1 AS3729B-BWLM MB39C831QN-G-EFE2 MAX4940MB LV56841PVD-XH MAX77686EWE+T AP4306BUKTR-G1 MIC5164YMM PT8A3252WE NCP392CSFCCT1G TEA1998TS/1H PT8A3284WE PI3VST01ZEEX PI5USB1458AZAEX PI5USB1468AZAEX MCP16502TAC-E/S8B MCP16502TAE-E/S8B MCP16502TAA-E/S8B MCP16502TAB-E/S8B TCKE712BNL,RF ISL91211AIKZT7AR5874 ISL91211BIKZT7AR5878 MAX17506EVKITBE# MCP16501TC-E/RMB ISL91212AIIZ-TR5770 ISL91212BIIZ-TR5775 CPX200D AX-3005D-3 TP-1303 TP-1305 TP-1603 TP-2305 TP-30102 TP-4503N MIC5167YML-TR LPTM21-1AFTG237C MPS-3003L-3 MPS-3005D SPD-3606 STLUX383A TP-60052 ADN8834ACBZ-R7 LM26480SQ-AA/NOPB LM81BIMTX-3/NOPB LM81CIMT-3/NOPB