LV8549MC

Monolithic Linear IC

12V Low Saturation Voltage Drive Stepper Motor Driver

ON Semiconductor ${ }^{\text {® }}$

http:/lonsemi.com

SOIC10

Overview

The LV8549MC is a low saturation voltage stepper motor driver IC.
It is optimal for Full step motor drive in 12 V system products.

Function

- DMOS output transistor adoption (Upper and lower total RON=1 Ω typ)
- The compact package (SOIC10) is adopted
- $\mathrm{V}_{\mathrm{CC}} \max =20 \mathrm{v}$, IO $\max =1 \mathrm{~A}$
- For one power supply (The control system power supply is unnecessary.)
- Current consumption 0 when standing by

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum power supply voltage	V $_{\text {CC }}$ max	VCC	-0.3 to +20	V
Output impression voltage	VOUT	OUT1, OUT2, OUT3, OUT4	-0.3 to +20	V
Input impression voltage	VIN	ENA, IN1, IN2	-0.3 to +6	V
GND pin outflow current	IGND	Per ch	1.0	A
Allowable Power dissipation	Pd max	${ }^{*}$		1.0
Operating temperature	Topr		W	
Storage temperature	Tstg		-30 to +85	${ }^{\circ} \mathrm{C}$

*: When mounted on the specified printed circuit board ($57.0 \mathrm{~mm} \times 57.0 \mathrm{~mm} \times 1.6 \mathrm{~mm}$), glass epoxy, both sides
Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.
Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommendation Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	V_{CC}	VCC	4.0 to 16	V
Input "H" level voltage	$\mathrm{V}_{I N} \mathrm{H}$	ENA , IN1, IN2	+1.8 to +5.5	V
Input "L" level voltage	$\mathrm{V}_{I N} \mathrm{~L}$		-0.3 to +0.7	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Power supply voltage	${ }^{1} \mathrm{CCO}$	Standby mode ENA=L			1	$\mu \mathrm{A}$
	${ }^{\text {I CC }}{ }^{1}$	ENA=H, no-load		1.7	2.3	mA
Input current	I_{IN}	$\mathrm{V}_{1 \mathrm{~N}}=5 \mathrm{~V}$	30	50	65	$\mu \mathrm{A}$
Thermal shutdown operating temperature	Ttsd	Design certification	150	180	210	${ }^{\circ} \mathrm{C}$
Temperature hysteresis width	Δ Ttsd	Design certification		40		${ }^{\circ} \mathrm{C}$
Low voltage protection function operation voltage	VthV $\mathrm{C}_{\text {C }}$		3.3	3.5	3.65	V
Release voltage	Vthret		3.55	3.8	3.95	V
Output ON resistance (Upper and lower total)	RON	${ }^{\text {I OUT }}=1.0 \mathrm{~A}$	0.7	1	1.25	Ω
Output leak current	Ioleak	$\mathrm{V}_{\mathrm{O}}=16 \mathrm{~V}$			10	$\mu \mathrm{A}$
Diode forward voltage	VD	ID=1.0A		1.0	1.2	V

Package Dimensions

SOIC-10NB

CASE 751BQ-01
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10 mm TOTAL IN EXCESS OF 'b
AT MAXIMUNS MATERIAL CONDION.
4. DIMENSIONS D AND E DO NOT INCLUDE

MOLD FLASH, PROTRUSIONS, OR GATE GATE BURRS SHALL NOT EXCEED 15 mm PER SIDE DIMENSIONS D AND E ARE DE ER SIDE. DIMENSIONS D AND E ARE DE
DIMENSIONS A AND B ARE TO BE DETERM INED AT DATUM F
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

DIM	MILLIMETERS	
	MIN	MAX
A	1.25	1.75
A1	0.10	0.25
A3	0.17	0.25
b	0.31	0.51
D	4.80	5.00
E	3.80	4.00
e	1.00	
BSC		
H	50	
h	0.37	
REF		
L	0.40	
L2	0.25	
M	1.27	
M	0°	

GENERIC

 MARKING DIAGRAM*SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Block Diagram

Pin Assignment

$\mathrm{V}_{\mathrm{CC}} 1$		10 OUT1
ENA 2		9 OUT2
IN1 3		8 OUT3
IN2 4		7 OUT4
NC 5		6 GND

Pin function

Pin No.	Pin name	Pin function	Equivalent Circuit
1	V_{CC}	Power-supply voltage pin. V_{CC} voltage is impressed. The permissible operation voltage is from 4.0 to $16.0(\mathrm{~V})$. The capacitor is connected for stabilization for GND pin (6pin).	
2	ENA	Motor drive control input pin. ENA pin becomes the stand-by mode in "L" and can 0 circuitry current. When ENA pin are " H ", from the stand-by mode, the output state becomes an output corresponding to the input logic. It is a digital input, and the range of " L " level input is 0 to $0.7(\mathrm{~V})$. The range of " " H " level input is 1.8 to $5.5(\mathrm{~V})$. With built-in pull-down resistance $100(\mathrm{k} \Omega)$.	
3	IN1	Motor drive control input pin. Driving control input pin of OUT1 (10pin) and OUT2 (9pin). With built-in pull-down resistance.	5VREG
4	IN2	Motor drive control input pin. Driving control input pin of OUT3 (8pin) and OUT4 (7pin). With built-in pull-down resistance.	
5	NC		
6	GND	Ground pin.	
7	OUT4	Driving output pin. The motor coil is connected between terminal OUT3 (8pin).	
8	OUT3	Driving output pin. The motor coil is connected between terminal OUT4 (7pin).	
9	OUT2	Driving output pin. The motor coil is connected between terminal OUT1 (10pin).	
10	OUT1	Driving output pin. The motor coil is connected between terminal OUT2 (9pin).	

Operation explanation

1. STM output control logic

Input			Output				State
ENA	IN1	IN2	OUT1	OUT2	OUT3	OUT4	
L	-	-	OFF	OFF	OFF	OFF	Stand-by
H	L	L	H	L	H	L	Step 1
	H	L	L	H	H	L	Step2
	H	H	L	H	L	H	Step3
	L	H	H	L	L	H	Step4

2. About the switch time from the stand-by state to the state of operation

This IC has completely stopped operating when ENA pin is "L". After the reset time of about 7μ s internal settings it shifts to a prescribed output status corresponding to the state of the input when ENA pin is "H".
During reset time, all output TR OFF is maintained.

3. Example of current waveform at full-step mode.

4. Thermal shutdown function

The thermal shutdown circuit is incorporated and the output is turned off when junction temperature Tj exceeds $180^{\circ} \mathrm{C}$.
As the temperature falls by hysteresis, the output turned on again (automatic restoration).
The thermal shutdown circuit does not guarantee the protection of the final product because it operates when the temperature exceed the junction temperature of $\mathrm{Tjmax}=150^{\circ} \mathrm{C}$.
$\mathrm{TSD}=180^{\circ} \mathrm{C}$ (typ)
$\Delta \mathrm{TSD}=40^{\circ} \mathrm{C}$ (typ)

Applied circuit example

* Bypass capacitor (C 1) connected between $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$ of all examples of applied circuit recommends the electric field capacitor of $0.1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$.
Confirm there is no problem in operation in the state of the motor load including the temperature property about the value of the capacitor.
Mount the position where the capacitor is mounted on nearest IC.

Measurement connection diagram

(1) Current consumption when standing by $\mathrm{I}_{\mathrm{CC}} 0$

Current consumption ICC 1

Measure $\mathrm{I}_{\mathrm{CC}} 0$ with all SW OFF. Measure $\mathrm{I}_{\mathrm{CC}} 1$ with any of the SW1 ON.
(2) Input current I_{IN}

This is about the measurement of ENA pin. Measure the other IN1 and IN2 pins as is this case.
(3) Input "H" level voltage VINH

Measure the Vin value at the time VOUT1 changes to " H " while varying Vin 0 to 5 V .
This is about the measurement of ENA pin. Measure the other IN1 and IN2 pins as is this case.
When I measure IN1 and IN2 pins, ENA pin, please perform it in a state of "H".
(4) Low voltage protection function operation voltage $\mathrm{VthV}_{\mathrm{CC}}$ /Release voltage Vthret

Low voltage protection function
Operation voltage : VCC=12V to 0 V
Release voltage : VCC=0V to 12 V

To measure the operating voltage of the reduced voltage protection, measure the VCC value at the time VOUT1 becomes " L " while varying VCC from 12 V to 0 V .
To measure the release voltage of the reduced voltage protection, measure the VCC value at the time VOUT1 becomes " H " while varying VCC from 0 V to 12 V .
(5) Output ON resistance Ron

SW_a side :
OUT1 Upper-side/OUT2 Lower-side
OUT3 Upper-side/OUT4 Lower-side
SW_b side :
OUT1 Lower-side/OUT2 Upper-side
OUT3 Lower-side/OUT4 Upper-side

Measure OUT1 upper side and OUT2 lower side FET with the SW set to "a".
Measure OUT1 lower side and OUT2 upper side FET with the SW set to "b".
Measure OUT3 and OUT4 as are the cases of OUT1 and OUT2.
(6) Output leak current Ioleak

<Each OUT Upper-side>

<Each OUT Lower-side>

To measure the upper FET output leak current, set the OUT to 0 V and measure the OUT current while varying VCC from 0 to 20 V .
To measure the lower FET output leak current, set the VCC to 20 V and measure the OUT current while varying OUT from 0 to 20 V .
This is about the measurement of OUT1 pin. Measure the other OUT2-4 pins as is this case.
(7) Diode forward voltage VD

SW_a side : Each OUT Upper-side
SW_b side : Each OUT Lower-side

Measure OUT1 and OUT2 upper FET with the SW set to "a".
Measure OUT1 and OUT2 lower FET with the SW set to "b".
Measure OUT3 and OUT4 as are the cases/connections of OUT1 and OUT2.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV8549MC-AH	SOIC10	$2500 /$ Tape \& Reel
LV8549MC-BH	(Pb-Free / Halogen Free)	SOIC10

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Motor/Motion/Ignition Controllers \& Drivers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 MSVGW54-14-5 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E 26700 LV8281VR-TLM-H BA5839FP-E2 IRAM2361067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B STK672-630CN-E TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVB54 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 MSVTA120 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW45-14-5 MSVGW54-14-4 STK984-091A-E MP6519GQ-Z LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 NCP81382MNTXG TDA21801

LB11851FA-BH NCV70627DQ001R2G

