Surface Mount - 400V - 800V

Description

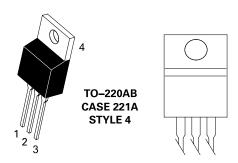
The MAC12x is designed for high performance full-wave AC control applications where high noise immunity and commutating di/dt are required.

Features

- Blocking Voltage to 800 Volts
- On-State Current Rating of 12 Amperes RMS at 70°C
- Uniform Gate Trigger Currents in Three Quadrants, Q1, Q2,
- High Immunity to dv/dt 250 V/µs Minimum at 125°C
- High Commutating di/dt 6.5 A/ms Minimum at 125°C
- Industry Standard TO-220
- High Surge Current Capability - 100 Amperes
- These Devices are Pb-Free and are RoHS Compliant

Additional Information

Resources



Samples

Functional Diagram

Pin Out

Surface Mount - 400V - 800V

Maximum Ratings (TJ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit	
Peak Repetitive Off-State Voltage (Note 1) MAC12D MAC12M (Gate Open, Sine Wave 50 to 60 Hz, $T_J = 40^{\circ}$ to 125°C) MAC12N		V _{DRM} , V _{RRM}	400 600 800	V
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, $T_c = 7$	0°C)	I _{T (RMS)}	12	А
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _i = 125°C)		I _{TSM}	100	А
Circuit Fusing Consideration (t = 8.3 ms)		l²t	41	A²sec
Peak Gate Power (Pulse Width \leq 1.0 μ s, $T_c = 80$ °C)		P _{GM}	16	W
Average Gate Power (t = 8.3 ms, T_c = 80°C)		P _{G(AV)}	0.35	W
Operating Junction Temperature Range		T_{J}	-40 to +125	°C
Storage Temperature Range		T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{ejc} R _{eja}	2.2 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds		T_L	260	°C

Electrical Characteristics - OFF (TJ = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	T ₁ = 25°C	I _{DRM} ,	-	-	0.01	m Λ
$(V_D = V_{DRM} = V_{RRM}$; Gate Open)	T _J = 125°C	IRRM	-	-	2.0	mA

Electrical Characteristics - ON (TJ = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak On–State Voltage (Note 2) ($I_{TM} = \pm 11 \text{ A}$)		V_{TM}	-	-	1.85	V
Gate Trigger Current	MT2(+), G(+)		5.0	13	35	mA
(Continuous dc)	MT2(+), G(-)	I _{GT}	5.0	13	35	
$(V_{D} = 12 \text{ V}, \text{ R}_{L} = 100 \Omega)$	MT2(-), G(-)		5.0	13	35	
Holding Current ($V_D = 12 \text{ V}$, Gate Open, Initiating Current = $\pm 150 \text{ mA}$))	I _H	-	20	40	mA
	MT2(+), G(+)	IL	_	20	50	mA
Latching Current $(V_D = 24 \text{ V}, I_G = 35 \text{ mA})$	MT2(+), G(-)		_	30	80	
(v _D = 24 v, i _G = 33 mm)	MT2(-), G(-)		_	20	50	
0 . 7:	MT2(+), G(+)		0.5	0.78	1.5	
Gate Trigger Voltage $(V_D = 12 \text{ V}, R_I = 100 \Omega)$	MT2(+), G(-)	$V_{\rm GT}$	0.5	0.70	1.5	V
(v _D = 12 v, 11 _L = 100 12)	MT2(-), G(-)		0.5	0.71	1.5	

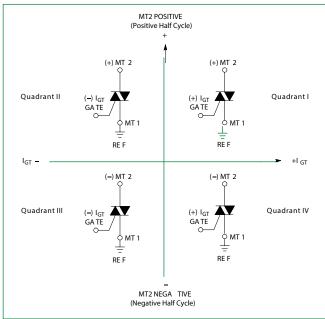
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different

2. Indicates Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2%

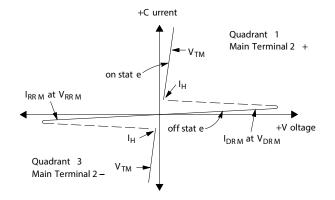
Recommended Operating Conditions may affect device reliability.

1. V_{DBM} and V_{BBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Surface Mount - 400V - 800V


Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Rate of Change of Commutating Current See Figure 10. ($V_D = 400 \text{V}$, $I_{TM} = 4.4 \text{A}$, Commutating dv/dt = 18 V/µs,Gate Open, $T_J = 125 ^{\circ}\text{C}$, f = 250 Hz, No Snubber)	di/dt _(C)	6.5	-	-	A/ms
Critical Rate of Rise of Off-State Voltage $(V_D = Rated V_{DRM}, Exponential Waveform, Gate open, T_J = 125°C)$	dV/dt	250	500	_	V/µs
Repetitive Critical Rate of Rise of On-State Current IPK = 50 A; PW = 40 µsec; diG/dt = 200 mA/µsec; f = 60 Hz	di/dt	-	-	10	A/µs


Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
$V_{_{\mathrm{RRM}}}$	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
l _u	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.
With in –phase signals (using standard AC lines) quadrants I and III are used

Surface Mount - 400V - 800V

Figure 1. Typical Gate Trigger Current vs Junction Temperature

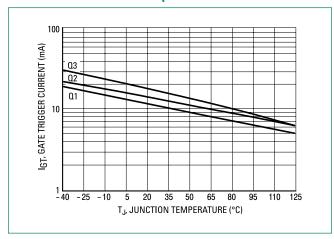
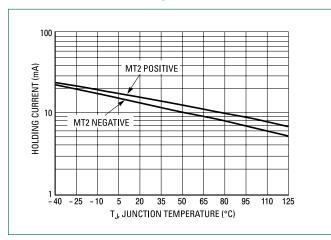



Figure 3. Typical Holding Current vs Junction Temperature

Figure 5. Typical RMS Current Derating

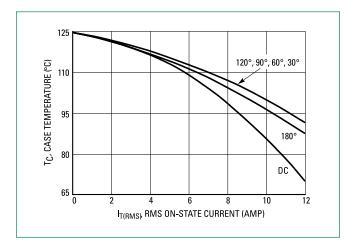


Figure 2. Typical Gate Trigger Voltage vs Junction Temperature

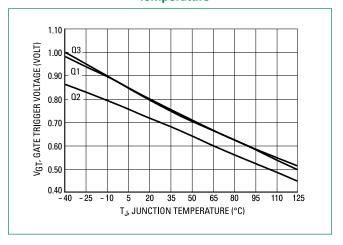
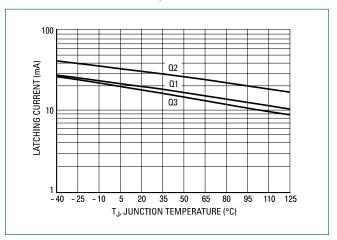
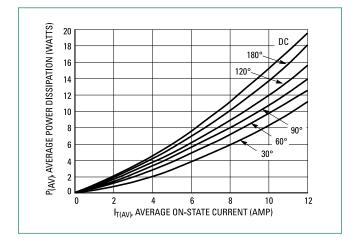
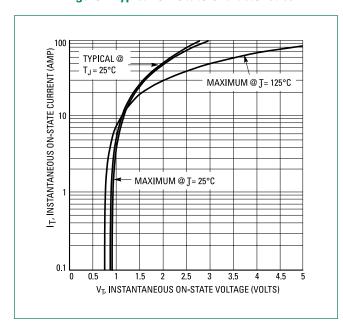
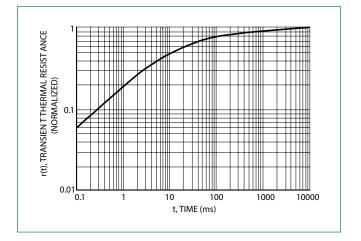


Figure 4. Typical Latching Current vs Junction Temperature

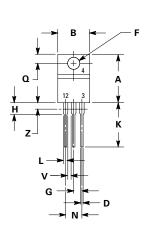




Figure 6. On-State Power Dissipation

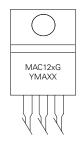


Surface Mount – 400V - 800V

Figure 7. Typical On-State Characteristics


Figure 8. Typical Thermal Response

Surface Mount - 400V - 800V


Dimensions

Part Marking System

x =D, M, or N Y =Year

M =Month A =Assembly Site

XX =Lot Serial Code

G =Pb-Free Package

Dim	Inches		Millin	neters
Dim	Min	Max	Min	Max
Α	0.590	0.620	14.99	15.75
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.41	2.67
Н	0.110	0.130	2.79	3.30
J	0.018	0.024	0.46	0.61
K	0.540	0.575	13.72	14.61
L	0.060	0.075	1.52	1.91
N	0.195	0.205	4.95	5.21
Q	0.105	0.115	2.67	2.92
R	0.085	0.095	2.16	2.41
S	0.045	0.060	1.14	1.52
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	_
Z		0.080		2.04

Pin Assignment			
1	Main Terminal 1		
2	Main Terminal 2		
3	Gate		
4	No Connection		

Ordering Information

Device	Package	Shipping
MAC12DG	TO 000 4 D	
MAC12MG	TO-220AB (Pb-Free)	1000 Units / Box
MAC12NG	(1 5 1100)	

2. Controlling dimension: inch.

^{1.} Dimensioning and tolerancing per ansi y14.5m, 1982.

^{3.} Dimension z defines a zone where all body and lead irregularities are allowed.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

CTA08-1000CW CTB24-800BW CTA08-1000C CTA12-800BWPT CTA16-1000B CTB24-800B BT137-600-0Q 5615 OT415Q 2N6075A

NTE5629 NTE5688 CTB08-400CW D31410 BTA425Z-800BTQ KS100N12 TOPT16-800C0,127 OT408,135 BT134-800E BT136D

BTB16Q-600BW Z0409MF BTA04-600B BTA06-600BRG BTA06-800BWRG BTA08-600BRG BTA08-800B BT136-600,127

MAC97A6,116 BT137-600E,127 BTB16-600CW3G BTB16-600CW3G Z0109MN,135 T825T-6I T1220T-6I NTE5638 ACST1235-8FP

BT136X-600E,127 MAC4DLM-1G BT134-600D,127 BTA08-600BW3G NTE56008 NTE56017 NTE56018 NTE56059 NTE5608

NTE5609 NTE5656 NTE56020 NTE56022