MAC16DG, MAC16MG, MAC16NG TRIAC - 400V - 800V

Description

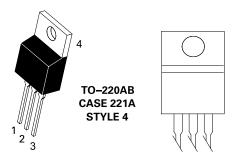
The MAC16 Series is designed for high performance full—wave ac control applications where high noise immunity and high commutating di/dt are required.

Features

- Blocking Voltage to 800 Volts
- On-State Current Rating of 16 Amperes RMS at 80°C
- Uniform Gate Trigger Currents in Three Quadrants
- High Immunity to dv/dt 500 V/µs minimum at 125°C
- Minimizes Snubber Networks for Protection
- Industry Standard TO-220 Package
- High Commutating di/dt 9.0 A/ms minimum at 125°C
- These Devices are Pb-Free and are RoHS Compliant

Additional Information

Resources



Accessories

Samples

Pin Out

Functional Diagram

MAC16DG, MAC16MG, MAC16NG TRIAC – 400V - 800V

Maximum Ratings (TJ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit	
Peak Repetitive Off-State Voltage (Note 1) (- 40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open)	MAC16D MAC16M MAC16N	V _{DRM} , V _{RRM}	400 600 800	V
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, $T_{\rm C}$ = 8	0°C)	I _{T (RMS)}	16	Α
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _c = 125°C)		I _{TSM}	150	А
Circuit Fusing Consideration (t = 8.3 ms)		l²t	93	A²sec
Peak Gate Power ($T_c = 80^{\circ}$ C, Pulse Width $\leq 1.0 \mu$ s)	P _{GM}	20	W	
Average Gate Power (t = 8.3 ms, $T_c = 80$ °C)	P _{G(AV)}	0.5	W	
Operating Junction Temperature Range	T_{J}	-40 to +125	°C	
Storage Temperature Range		T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{ejc} R _{eja}	2.0 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 10 seconds	s, 1/8" from case for	T _L	260	°C

Electrical Characteristics - OFF (TJ = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	T ₁ = 25°C	I _{DRM} ,	-	-	0.01	mΛ
$(V_D = V_{DRM} = V_{RRM}; Gate Open)$	T = 125°C	I	-	-	2.0	mA

Electrical Characteristics - ON $(TJ = 25^{\circ}C)$ unless otherwise noted; Electricals apply in both directions)

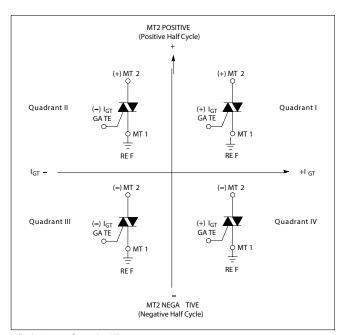
Characteristic		Symbol	Min	Тур	Max	Unit
Peak On-State Voltage (Note 2) ($I_{TM} = \pm 21 \text{ A Peak}$)		V_{TM}	_	1.2	1.6	V
Gate Trigger Current	MT2(+), G(+)		10	16	50	
(Continuous dc)	MT2(+), G(-)	I _{GT}	10	18	50	mA
$(V_{D} = 12 \text{ V}, R_{L} = 100 \Omega)$	MT2(-), G(-)		10	22	50	
Gate Trigger Voltage	MT2(+), G(+)		0.5	0.75	1.5	
(Continuous dc)	MT2(+), G(-)	$V_{\rm GT}$	0.5	0.72	1.5	V
$(V_{D} = 12 \text{ V}, R_{L} = 100 \Omega)$	MT2(-), G(-)		0.5	0.82	1.5	
	MT2(+), G(+)		-	33	50	
Latching Current $(V_D = 24 \text{ V, } I_C = 50 \text{ mA})$	MT2(+), G(-)	V_{GD}	_	36	80	V
(V _D = 24 V, I _G = 30 Hill V)	MT2(-), G(-)		-	33	50	
Holding Current ($V_D = 12 V_{dc}$, Gate Open, Initiating Curre	$nt = \pm 150 \text{ mA})$	I _H	_	20	50	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

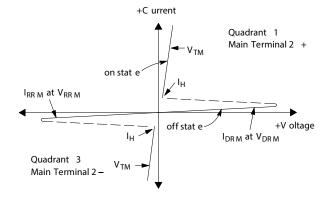
2. Indicates Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%.

^{1.} V_{DBM} and V_{SBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

MAC16DG, MAC16MG, MAC16NG TRIAC – 400V - 800V


Dynamic Characteristics

Characteristic		Symbol	Min	Тур	Max	Unit
Rate of Change of Commutating Current, See Figure 10. (VD = 400 V , ITM = 6.0 A , Commutating dv/dt = $24 \text{ V/}\mu\text{s}$, Gate Open, TJ = 125°C , f = 250 Hz , No Snubber)	CL = 10µF	(di/dt)c	9.0	-	_	A/ms
Critical Rate of Rise of Off-State Voltage $(V_D = Rated V_{DRM}, Exponential Waveform, Gate Open, T_J = 125°C)$	LL = 40 mH	dv/dt	500	_	_	V/µs


Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.
With in-phase signals (using standard AC lines) quadrants I and III are used

MAC16DG, MAC16MG, MAC16NG TRIAC - 400V - 800V

Figure 1. RMS Current Derating

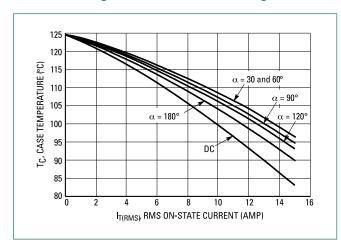


Figure 3. On-State Characteristics

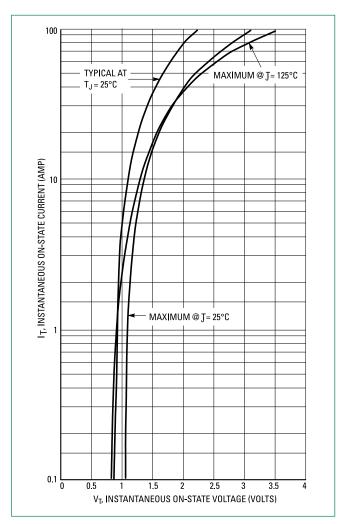
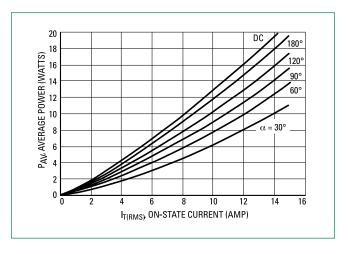



Figure 2. On-State Power Dissipation

Figure 4. Thermal Response

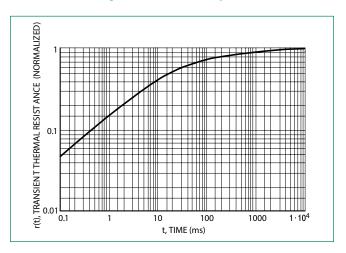
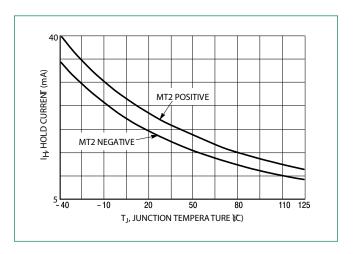



Figure 5. Hold Current Variation

MAC16DG, MAC16MG, MAC16NG TRIAC – 400V - 800V

Figure 6. Typical Holding Current vs Junction Temperature

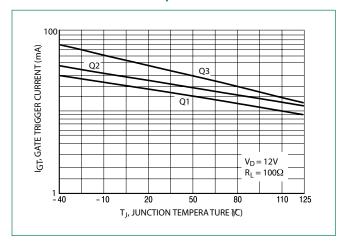


Figure 8. Critical Rate of Rise of Off-State Voltage (Exponential)

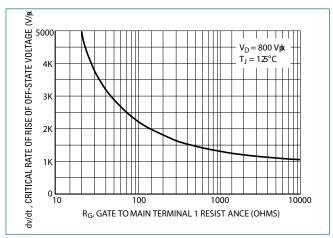


Figure 7. Gate Trigger Voltage vs Junction Temperature

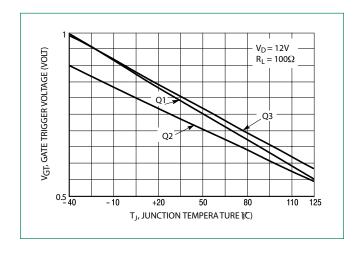
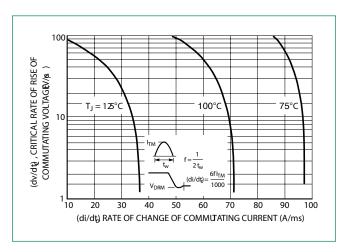
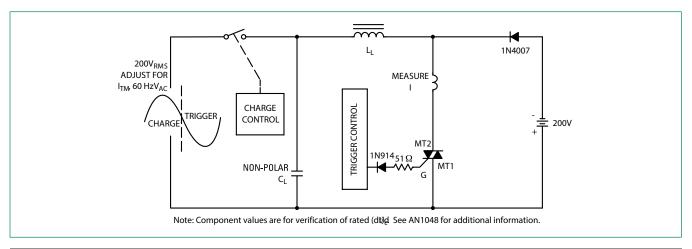
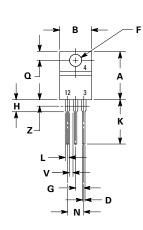
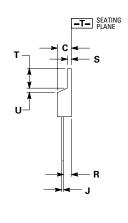


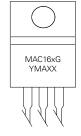
Figure 9. Critical Rate of Rise of Commutating Voltage


Figure 10. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)c



MAC16DG, MAC16MG, MAC16NG TRIAC - 400V - 800V


Dimensions

Part Marking System

Y =Year M =Month A =Assembly Site XX =Lot Serial Code G =Pb-Free Package

Pin Assignment

Main Terminal 1 Main Terminal 2

Gate

Main Terminal 2

Inches Dim		Millin	neters	
DIM	Min	Max	Min	Max
Α	0.590	0.620	14.99	15.75
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.41	2.67
Н	0.110	0.130	2.79	3.30
J	0.018	0.024	0.46	0.61
K	0.540	0.575	13.72	14.61
L	0.060	0.075	1.52	1.91
N	0.195	0.205	4.95	5.21
Q	0.105	0.115	2.67	2.92
R	0.085	0.095	2.16	2.41
S	0.045	0.060	1.14	1.52
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

'8	
39	
'3	
67	
30	
61	
61	
1	
21	
)2	

Ordering	Information

3

4

Device	Package	Shipping	
MAC16DG	TO 000		
MAC16MG	TO-220 (Pb-Free)	1000 Units/ Box	
MAC16NG	(1 5 1100)		

- Dimensioning and tolerancing per ansi y14.5m, 1982.
 Controlling dimension: inch.
 Dimension z defines a zone where all body and lead irregularities are allowed.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

CTA08-1000CW CTB24-800BW CTA08-1000C CTA12-800BWPT CTA16-1000B CTB24-800B BT137-600-0Q 5615 OT415Q 2N6075A

NTE5629 NTE5688 CTB08-400CW D31410 BTA425Z-800BTQ KS100N12 TOPT16-800C0,127 OT408,135 BT134-800E BT136D

BTB16Q-600BW Z0409MF BTA04-600B BTA06-600BRG BTA06-800BWRG BTA08-600BRG BTA08-800B BT136-600,127

MAC97A6,116 BT137-600E,127 BTB16-600CW3G BTB16-600CW3G Z0109MN,135 T825T-6I T1220T-6I NTE5638 ACST1235-8FP

BT136X-600E,127 MAC4DLM-1G BT134-600D,127 BTA08-600BW3G NTE56008 NTE56017 NTE56018 NTE56059 NTE5608

NTE5609 NTE5656 NTE56020 NTE56022