
Triacs - 400V - 800V

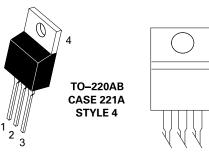
Additional Information



Accessories

Samples

Functional Diagram


Description

Designed primarily for full-wave AC control applications, such as light dimmers, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied main terminal voltage with positive or negative gate triggering.

Features

- Blocking Voltage to 600 Volts
- All Diffused and Glass
 Passivated Junctions for
 Greater Parameter Uniformity
 and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Gate Triggering Guaranteed in Four Modes (Quadrants)
- Pb-Free Packages are Available

Triacs - 400V - 800V

Maximum Ratings $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Rating		Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) (– 40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open)	V _{DRM} , V _{RRM}	600 800	V	
On-State RMS Current (Full Cycle Sine Wave, 50 to 60 Hz, $T_{\rm c}$ =	: 70°C)	I _{T (RMS)}	10	Α
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, +25°C) Preceded and followed by rated current	60 Hz, $T_c =$	I _{TSM}	100	А
Circuit Fusing Consideration (t = 8.3 ms)	l²t	40	A²sec	
Peak Gate Power ($T_c = +70^{\circ}\text{C}$, Pulse Width = 10 μ s)	P_{GM}	20	W	
Average Gate Power (t = 8.3 ms, $T_C = 70$ °C)	P _{G (AV)}	0.35	W	
Peak Gate Current ($T_c = +70$ °C, Pulse Width = 10 s)	I _{GM}	2.0	А	
Operating Junction Temperature Range	T_{J}	-40 to +125	°C	
Storage Temperature Range		T_{stg}	-40 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{eJC} R _{eJA}	2.0 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds		T _L	260	°C

Electrical Characteristics - OFF ($T_J = 25^{\circ}\text{C}$ unless otherwise noted; Electricals apply in both directions)

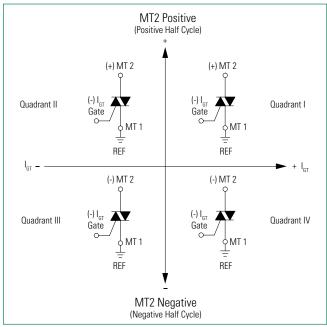
Characteristic			Min	Тур	Max	Unit
Peak Repetitive Blocking Current	T ₁ = 25°C	I _{DRM} ,	-	-	10	μΑ
$(V_D = V_{DRM} = V_{RRM}; Gate Open)$	$T_{J}^{3} = 125^{\circ}C$	I _{RRM}	-	-	2.0	mA

Electrical Characteristics - ON (T_J = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak On-State Voltage (I _{TM} = ±14 A Peak; Pulse Width =	= 1 to 2 ms, Duty Cycle ≤2%)	V_{TM}	-	1.2	1.65	V
	MT2(+), G(+)		-	12	50	
Gate Trigger Current (Continuous dc)	MT2(+), G(-)	ı	_	12	50	m A
$(V_D = 12 V_{de}, R_1 = 100 \text{ Ohms})$	MT2(-), G(-)	GT	_	20	50	mA
D de' L	MT2(-), G(+)		-	35	75	
	MT2(+), G(+)		-	0.9	2.0	V
Gate Trigger Voltage (Continuous dc)	MT2(+), G(-)	V _{GT}	-	0.9	2.0	
$(V_D = 12 V_{tot}, R_t = 100 \Omega)$	MT2(-), G(-)		_	1.1	2.0	
, D de, L ,	MT2(-), G(+)		-	1.4	2.5	
Holding Current ($V_D = 12 V_{de'}$ Gate Open, Initiating Current = ±200 mA, TC=+25 °C))			_	6.0	50	mA
Turn-On Time (Rated $V_{DRM'}$ I_{TM} = 14 A) (I_{GT} = 120 mA, Rise Time = 0.1 s, Pulse Width = 2 s)		t _{gt}	-	1.5	_	μs
Gate Non–Trigger Voltage (Continuous dc) (Main Terminal Voltage = 12 V, RL = 100 , $T_J = +125$ °C)	All Four Quadrants	V_{GD}	0.2	-	-	V

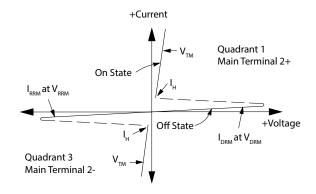
not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

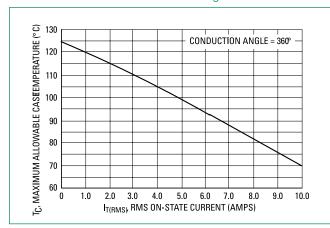

Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate of Rise of Commutation Voltage $(V_D = Rated V_{DRM'} I_{TM} = 14 A$, Commutating di/dt = 5.0 A/ms, Gate Unenergized, $T_C = 70$ °C)	di/dt(c)	-	5.0	_	V/µs
Critical Rate of Rise of Off-State Voltage $(V_D = \text{Rated } V_{DBM}, \text{ Exponential Waveform, Gate Open, } T_C = +70^{\circ}\text{C})$	dv/dt	_	100	_	V/µs

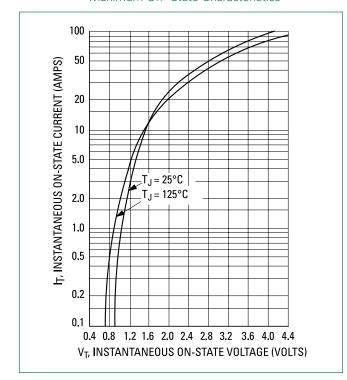
Voltage Current Characteristic of SCR


Symbol	Parameter
$V_{_{\mathrm{DRM}}}$	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I _H	Holding Current

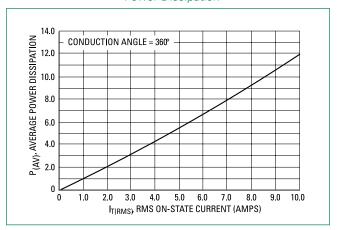
Quadrant Definitions for a Triac

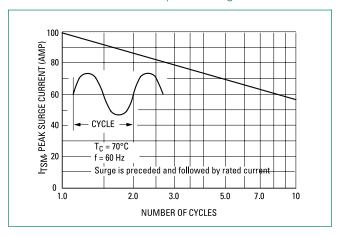

All Polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used



Triacs - 400V - 800V


Figure 1.
Current Derating


Figure 3. Maximum On–State Characteristics

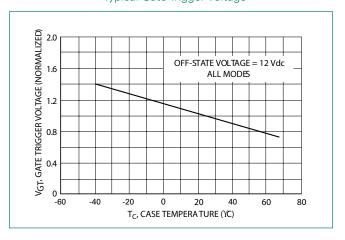
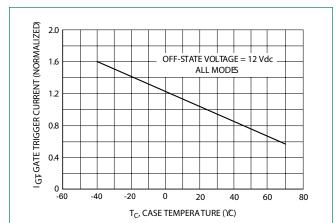
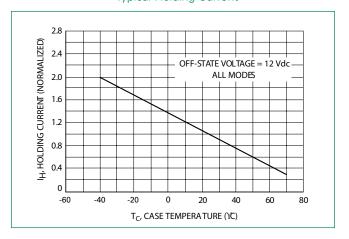

Figure 2. Power Dissipation

Figure 4.Maximum Non–Repetitive Surge Current


Figure 5.Typical Gate Trigger Voltage



Triacs - 400V - 800V

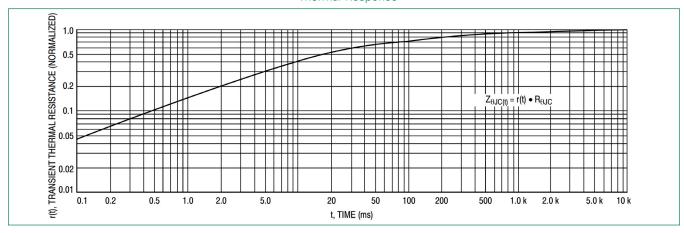
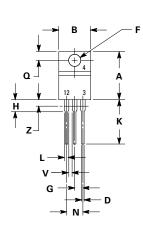
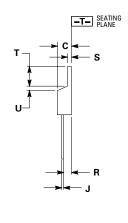
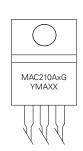

Figure 6.Typical Gate Trigger Current

Figure 7.Typical Holding Current


Figure 8.Thermal Response



Triacs - 400V - 800V


Dimensions

Part Marking System

X	=8 or 10
Υ	=Year
M	=Month
Α	=Assembly Site
XX	=Lot Serial Code
G	=Pb-Free Packag

Dim	Inc	hes	Millimeters		
Dilli	Min	Max	Min	Max	
Α	0.590	0.620	14.99	15.75	
В	0.380	0.420	9.65	10.67	
С	0.178	0.188	4.52	4.78	
D	0.025	0.035	0.64	0.89	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.41	2.67	
Н	0.110	0.130	2.79	3.30	
J	0.018	0.024	0.46	0.61	
K	0.540	0.575	13.72	14.61	
L	0.060	0.075	1.52	1.91	
N	0.195	0.205	4.95	5.21	
Q	0.105	0.115	2.67	2.92	
R	0.085	0.095	2.16	2.41	
S	0.045	0.060	1.14	1.52	
T	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
V	0.045		1.15		
Z		0.080		2.04	

not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

Pin Assignment			
1	Main Terminal 1		
2	Main Terminal 2		
3	Gate		
4	Main Terminal 2		

Ordering Information

Device	Package	Shipping
MAC210A8	TO-220AB	
MAC210A8G	TO-220AB (Pb-Free)	1000 Unite/ Day
MAC210A10	TO-220AB	1000 Units/ Box
MAC210A10G	TO-220AB (Pb-Free)	

- 1. Dimensioning and tolerancing per ansi y14.5m, 1982.
- Controlling dimension: inch.
 Dimension z defines a zone where all body and lead irregularities are allowed.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

CTA08-1000CW CTB24-800BW CTA08-1000C CTA12-800BWPT CTA16-1000B CTB24-800B BT137-600-0Q 5615 OT415Q 2N6075A

NTE5629 NTE5688 CTB08-400CW D31410 BTA425Z-800BTQ KS100N12 TOPT16-800C0,127 OT408,135 BT134-800E BT136D

BTB16Q-600BW Z0409MF BTA04-600B BTA06-600BRG BTA06-800BWRG BTA08-600BRG BTA08-800B BT136-600,127

MAC97A6,116 BT137-600E,127 BTB16-600CW3G BTB16-600CW3G Z0109MN,135 T825T-6I T1220T-6I NTE5638 ACST1235-8FP

BT136X-600E,127 MAC4DLM-1G BT134-600D,127 BTA08-600BW3G NTE56008 NTE56017 NTE56018 NTE56059 NTE5608

NTE5609 NTE5656 NTE56020 NTE56022