
MAC212A8, MAC212A10

Triacs - 400V - 800V

Additional Information

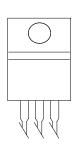
Resources

Accessories

Samples

Functional Diagram

Description


Designed primarily for full-wave AC control applications, such as light dimmers, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied main terminal voltage with positive or negative gate triggering.

Features & Benefits

- Blocking Voltage to 800 Volts
- All Diffused and Glass
 Passivated Junctions for
 Greater Parameter Uniformity
 and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Gate Triggering Guaranteed in Four Modes (Quadrants)
- Pb-Free Packages are Available

Maximum Ratings $(T_1 = 25^{\circ}C \text{ unless otherwise noted})$

Rating		Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1)	MAC212A8	V _{DRM} ,	600 800	V
(- 40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open)	MAC212A10	V_{RRM}	800	·
On-State RMS Current (Full Cycle Sine Wave, 50 to 60 Hz, $T_{\rm C}$ =	+85°C)	I _{T (RMS)}	12	А
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, $T_c = +25^{\circ}\text{C}$) Preceded and followed by rated current	I _{TSM}	100	А	
Circuit Fusing Considerations (t = 8.3 ms)		l²t	40	A²sec
Peak Gate Power ($T_c = +85^{\circ}\text{C}$, Pulse Width = 10 μ s)	P_{GM}	20	W	
Average Gate Power (t = 8.3 ms, $T_c = +85$ °C)	P _{G (AV)}	0.35	W	
Peak Gate Current ($T_c = +85$ °C, Pulse Width = 10 μ s)	I _{GM}	2.0	А	
Operating Junction Temperature Range	T_{J}	-40 to +125	°C	
Storage Temperature Range		T_{stg}	-40 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{ejc} R _{eja}	2.0 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds		T_L	260	°C

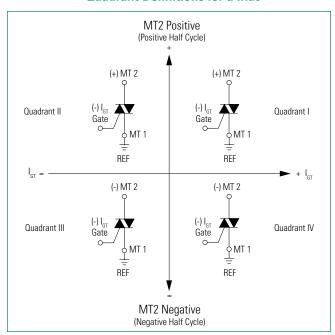
Electrical Characteristics - OFF $(T_J = 25^{\circ}C \text{ unless otherwise noted}; \text{ Electricals apply in both directions})$

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	T ₁ = 25°C	I _{DRM} ,	-	-	10	μΑ
$(V_D = V_{DRM} = V_{RRM}; Gate Open)$	T _J = 125°C	I	-	-	2.0	mA

Electrical Characteristics - ON (T_J = 25°C unless otherwise noted; Electricals apply in both directions)

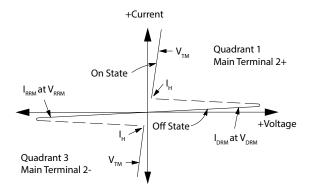
Characteristic		Symbol	Min	Тур	Max	Unit
Peak On-State Voltage (I _{TM} = 17 A Peak; Pulse Width =	1 to 2 ms, Duty Cycle ≤2%)	V_{TM}	-	1.3	1.75	V
	MT2(+), G(+)		_	12	50	
Gate Trigger Current (Continuous dc)	MT2(+), G(-)	1	_	12	50	mΛ
(Main Terminal Voltage = 12 Vdc, $R_L = 100 \Omega$)	MT2(-), G(-)	GT	_	20	50	mA
	MT2(-), G(+)		_	35	75	
	MT2(+), G(+)		_	0.9	2.0	V
Gate Trigger Voltage (Continuous dc)	MT2(+), G(-)	$V_{\rm GT}$	-	0.9	2.0	
(Main Terminal Voltage = 12 Vdc, $R_L = 100 \Omega$)	MT2(-), G(-)		-	1.1	2.0	
	MT2(-), G(+)		_	1.4	2.5	
Gate Non–Trigger Voltage (Continuous dc) Main Terminal Voltage = 12 V, R_1 = 100 , T_2 = +125°C) All Four Quadrants		$V_{\rm GD}$	0.2	_	_	V
Holding Current (Main Terminal Voltage = 12 Vdc, Gate Open, Initiating Current = \pm 200 mA)		I _H	-	6.0	50	mA
Turn-On Time (Rated $V_{DRM'}$ I_{TM} = 17 A) (I_{GT} = 120 mA, Rise Time = 0.1 μ s, Pulse Width = 2 μ s)		t _{gt}	_	1.5	_	μs

V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.


Dynamic Characteristics

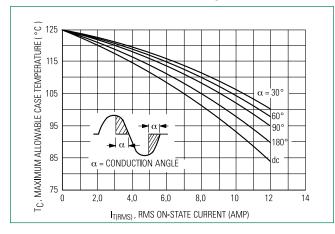
Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate of Rise of Commutation Voltage ($V_D = Rated V_{DRM'} I_{TM} = 17 A$, Commutating di/dt = 6.1 A/ms, Gate Unenergized, $T_C = +85$ °C)	di/dt _(c)	-	5.0	-	V/µs
Critical Rate of Rise of Off-State Voltage $(V_D = Rated V_{DRM'}, Exponential Waveform, Gate Open, T_C = +85°C)$	dv/dt	_	100	_	V/µs

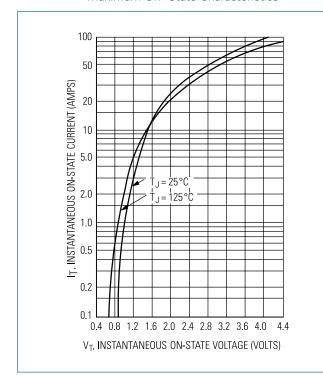
Voltage Current Characteristic of SCR


Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
$V_{_{\mathrm{RRM}}}$	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I _H	Holding Current

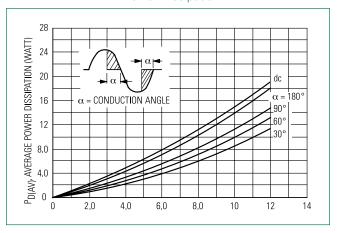
Quadrant Definitions for a Triac

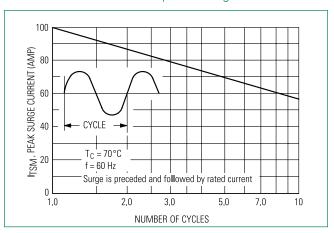
All Polarities are referenced to MT1.


With in-phase signals (using standard AC lines) quadrants I and III are used


MAC212A8, MAC212A10

Triacs - 400V - 800V


Figure 1.Current Derating


Figure 3. Maximum On–State Characteristics

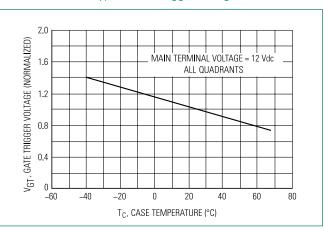
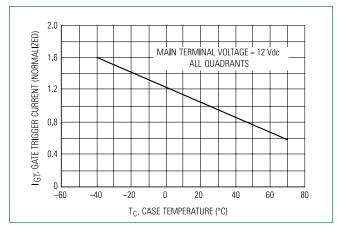
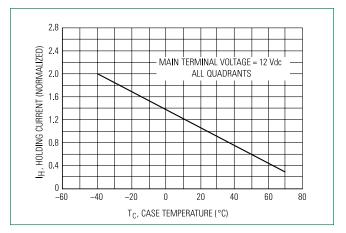

Figure 2. Power Dissipation

Figure 4.Maximum Non-Repetitive Surge Current

Figure 5. Typical Gate Trigger Voltage




MAC212A8, MAC212A10

Triacs - 400V - 800V

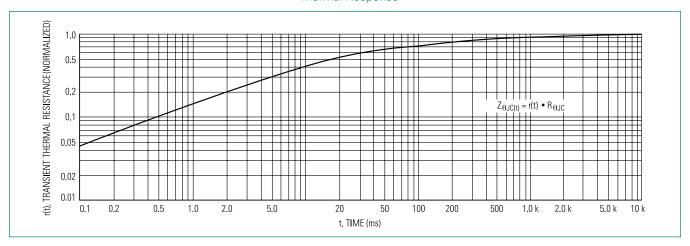
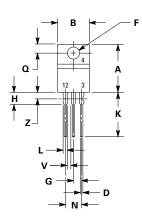
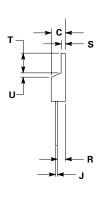

Figure 6.Typical Gate Trigger Current

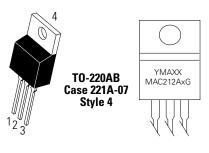
Figure 7.Typical Holding Current


Figure 8.Thermal Response



MAC212A8, MAC212A10 Triacs – 400V - 800V

Dimensions



	Inches		Millin	neters
Dim	Min	Max	Min	Max
Α	0.590	0.620	14.99	15.75
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.41	2.67
Н	0.110	0.130	2.79	3.30
J	0.018	0.024	0.46	0.61
K	0.540	0.575	13.72	14.61
L	0.060	0.075	1.52	1.91
N	0.195	0.205	4.95	5.21
Q	0.105	0.115	2.67	2.92
R	0.085	0.095	2.16	2.41
S	0.045	0.060	1.14	1.52
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	_	1.15	
Z		0.080	_	2.04

- Dimensioning and tolerancing per ansi y14.5m, 1982.
 Controlling dimension: inch.
 Dimension z defines a zone where all body and lead irregularities are allowed.

Part Marking System

Х	=8 or 10
Υ	=Year
M	=Month
Α	=Assembly Site
XX	=Lot Serial Code
G	=Pb-Free Package

Pin Assignment		
1	Cathode	
2	Anode	
3	Gate	
4	Anode	

Ordering Information

Device	Package	Shipping
MAC212A8	TO-220AB	
MAC212A8G	TO-220AB (Pb-Free)	1000 Unita/ Day
MAC212A10	TO-220AB	1000 Units/ Box
MAC212A10G	TO-220AB (Pb-Free)	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

CTA08-1000CW CTB24-800BW CTA08-1000C CTA12-800BWPT CTA16-1000B CTB24-800B BT137-600-0Q 5615 OT415Q 2N6075A

NTE5629 NTE5688 CTB08-400CW D31410 BTA425Z-800BTQ KS100N12 TOPT16-800C0,127 OT408,135 BT134-800E BT136D

BTB16Q-600BW Z0409MF BTA04-600B BTA06-600BRG BTA06-800BWRG BTA08-600BRG BTA08-800B BT136-600,127

MAC97A6,116 BT137-600E,127 BTB16-600CW3G BTB16-600CW3G Z0109MN,135 T825T-6I T1220T-6I NTE5638 ACST1235-8FP

BT136X-600E,127 MAC4DLM-1G BT134-600D,127 BTA08-600BW3G NTE56008 NTE56017 NTE56018 NTE56059 NTE5608

NTE5609 NTE5656 NTE56020 NTE56022