Switch-mode Power Rectifiers 30 V, 30 A

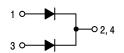
Features and Benefits

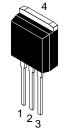
- Low Forward Voltage
- Low Power Loss/High Efficiency
- High Surge Capacity
- 150°C Operating Junction Temperature
- 30 A Total (15 A Per Diode Leg)
- Guard-Ring for Stress Protection
- NRVBB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Power Supply Output Rectification
- Power Management
- Instrumentation

Mechanical Characteristics:

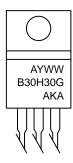

- Case: Epoxy, Molded
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight: 1.5 Grams (I²PAK) (Approximately)
 1.9 Grams (TO-220) (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds



ON Semiconductor®

www.onsemi.com

SCHOTTKY BARRIER RECTIFIER 30 AMPERES, 30 VOLTS


I²PAK (TO-262) CASE 418D STYLE 3

MARKING

TO-220 CASE 221A STYLE 6

A = Assembly Location

Y = Year
WW = Work Week
B30H30 = Device Code
G = Pb-Free Package
AKA = Diode Polarity

ORDERING AND MARKING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

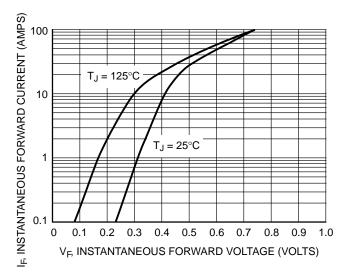
MAXIMUM RATINGS (Per Diode Leg)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	V
Average Rectified Forward Current (Rated V _R) T _C = 138°C	I _{F(AV)}	15	Α
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz)	I _{FRM}	30	Α
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	260	А
Operating Junction Temperature (Note 1)	TJ	-55 to +150	°C
Storage Temperature	T _{stg}	-55 to +150	°C
Voltage Rate of Change (Rated V _R)	dv/dt	10,000	V/μs
Controlled Avalanche Energy (see test conditions in Figures 9 and 10)	W _{AVAL}	250	mJ
ESD Ratings: Machine Model = C Human Body Model = 3B		> 400 > 8000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

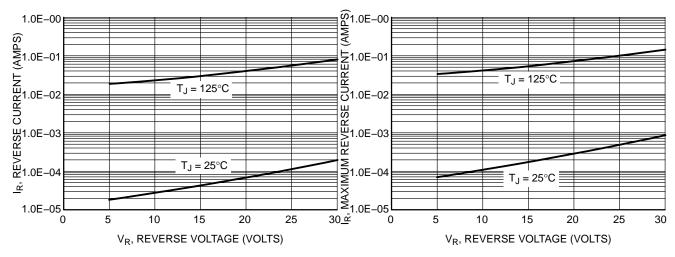
Rating	Symbol	Value	Unit
Maximum Thermal Resistance Junction-to-Case Junction-to-Ambient	R _{θJC} R _{θJA}	2.0 70	°C/W


ELECTRICAL CHARACTERISTICS (Per Diode Leg)

Rating	Symbol	Value	Unit
Maximum Instantaneous Forward Voltage (Note 2) $ \begin{aligned} &(I_F=15 \text{ A, } T_C=25^\circ\text{C}) \\ &(I_F=15 \text{ A, } T_C=125^\circ\text{C}) \\ &(I_F=30 \text{ A, } T_C=25^\circ\text{C}) \\ &(I_F=30 \text{ A, } T_C=125^\circ\text{C}) \end{aligned} $	VF	0.48 0.40 0.55 0.53	V
Maximum Instantaneous Reverse Current (Note 2) (Rated DC Voltage, $T_C = 25^{\circ}C$) (Rated DC Voltage, $T_C = 125^{\circ}C$)	i _R	0.8 130	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{1.} The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.


Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%.

100 T_J = 125°C T_J = 25°C T

Figure 1. Typical Forward Voltage

Figure 2. Maximum Forward Voltage

Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

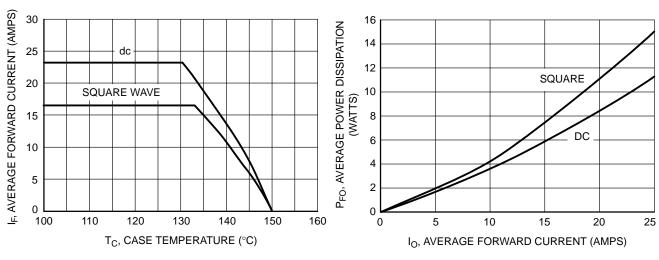


Figure 5. Current Derating

Figure 6. Forward Power Dissipation

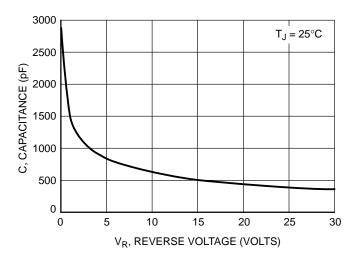


Figure 7. Typical Capacitance

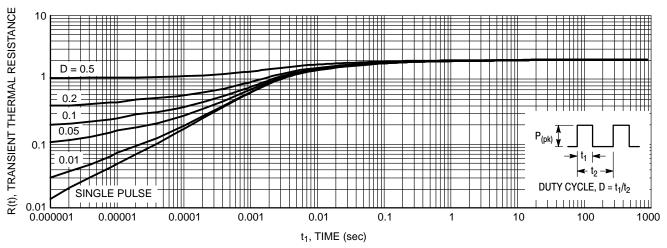


Figure 8. Thermal Response Junction-to-Case

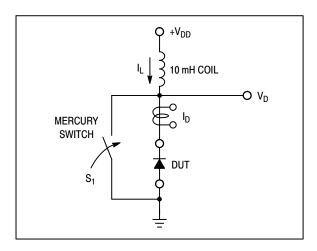


Figure 9. Test Circuit

The unclamped inductive switching circuit shown in Figure 9 was used to demonstrate the controlled avalanche capability of this device. A mercury switch was used instead of an electronic switch to simulate a noisy environment when the switch was being opened.

When S_1 is closed at t_0 the current in the inductor I_L ramps up linearly; and energy is stored in the coil. At t_1 the switch is opened and the voltage across the diode under test begins to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at BV_{DUT} and the diode begins to conduct the full load current which now starts to decay linearly through the diode, and goes to zero at t_2 .

By solving the loop equation at the point in time when S_1 is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is equal to the energy stored in the inductor plus a finite amount of energy from the V_{DD} power supply while the diode is in breakdown (from t_1 to t_2) minus any losses due to finite component resistances. Assuming the component resistive

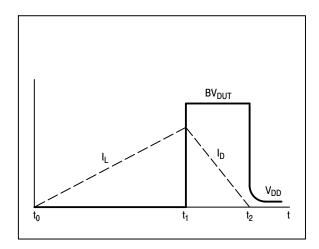
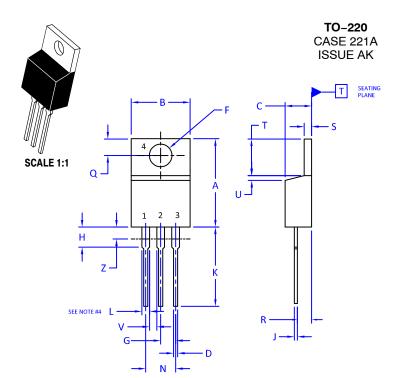


Figure 10. Current-Voltage Waveforms

elements are small Equation (1) approximates the total energy transferred to the diode. It can be seen from this equation that if the V_{DD} voltage is low compared to the breakdown voltage of the device, the amount of energy contributed by the supply during breakdown is small and the total energy can be assumed to be nearly equal to the energy stored in the coil during the time when S_1 was closed, Equation (2).

EQUATION (1):

$$W_{AVAL} \approx \frac{1}{2}LI_{LPK}^{2} \left(\frac{BV_{DUT}}{BV_{DUT} - V_{DD}} \right)$$


EQUATION (2):

$$W_{AVAL} \approx \frac{1}{2}LI_{LPK}^2$$

ORDERING INFORMATION

Device	Package	Shipping
MBRB30H30CT-1G	TO-262 (Pb-Free)	50 Units / Rail
NRVBB30H30CT-1G	TO-262 (Pb-Free)	50 Units / Rail
MBR30H30CTG	TO-220 (Pb-Free)	50 Units / Rail

DATE 13 JAN 2022

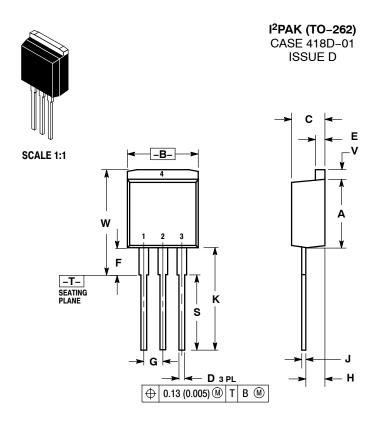
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INCHES		MILLIMI	ETERS
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

STYLE 1: PIN 1. 2. 3. 4.	COLLECTOR EMITTER	STYLE 2: PIN 1. 2. 3. 4.	COLLECTOR	STYLE 3: PIN 1. 2. 3. 4.	ANODE	2. 3.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
STYLE 5: PIN 1. 2. 3. 4.	DRAIN SOURCE	2. 3.	ANODE CATHODE ANODE CATHODE	STYLE 7: PIN 1. 2. 3. 4.	ANODE	2. 3.	CATHODE ANODE EXTERNAL TRIP/DELAY ANODE
STYLE 9: PIN 1. 2. 3. 4.		STYLE 10: PIN 1. 2. 3. 4.	GATE	STYLE 11: PIN 1. 2. 3. 4.	DRAIN	STYLE 12: PIN 1. 2. 3. 4.	


DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220		PAGE 1 OF 1

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

ON Semiconductor®

DATE 16 OCT 2007

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.335	0.380	8.51	9.65	
В	0.380	0.406	9.65	10.31	
С	0.160	0.185	4.06	4.70	
D	0.026	0.035	0.66	0.89	
Е	0.045	0.055	1.14	1.40	
F	0.122	REF	3.10 REF		
G	0.100	BSC	2.54 BSC		
Н	0.094	0.110	2.39	2.79	
J	0.013	0.025	0.33	0.64	
K	0.500	0.562	12.70	14.27	
S	0.390 REF		9.90	REF	
٧	0.045	0.070	1.14	1.78	
W	0.522	0.551	13.25	14.00	

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:
PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. GATE
2. COLLECTOR	2. DRAIN	2. CATHODE	2. COLLECTOR
EMITTER	SOURCE	3. ANODE	3. EMITTER
COLLECTOR	4. DRAIN	4. CATHODE	 COLLECTOR

DOCUMENT NUMBER:	98ASB16716C	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	I ² PAK (TO-262)		PAGE 1 OF 1

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Diodes - General Purpose, Power, Switching category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

RD0306T-H BAQ33-GS18 BAV17-TR BAV19-TR 1N3611 NTE156A NTE525 NTE571 NTE574 NTE5804 NTE5806 NTE6244

1SS181-TP 1SS193,LF 1SS400CST2RA SDAA13 SHN2D02FUTW1T1G LS4151GS08 1N4449 1N456A 1N4934-E3/73 1N914B

1N914BTR RFUH20TB3S BAS 28 E6327 BAV199-TP BAW56DWQ-7-F BAW56M3T5G BAW75-TAP MM230L-CAA IDW40E65D1

JAN1N3600 LL4151-GS18 053684A SMMSD4148T3G 707803H NSVDAN222T1G SP000010217 ACDSW4448-HF CDSZC01100-HF

BAV199E6433HTMA1 BAV70M3T5G SMBT2001T1G NTE5801 NTE5800 NTE5808 NTE6240 NTE6248 DLM10C-AT1 BAS28-7