5 V ECL 1:9 Differential Clock Driver

Description

The MC10E/100E111 is a low skew 1-to-9 differential driver, designed with clock distribution in mind. It accepts one signal input, which can be either differential or else single-ended if the V_{BB} output is used. The signal is fanned out to 9 identical differential outputs. An enable input is also provided. A HIGH disables the device by forcing all Q outputs LOW and all \overline{Q} outputs HIGH.

The device is specifically designed, modeled and produced with low skew as the key goal. Optimal design and layout serve to minimize gate to gate skew within-device, and empirical modeling is used to determine process control limits that ensure consistent t_{pd} distributions from lot to lot. The net result is a dependable, guaranteed low skew device.

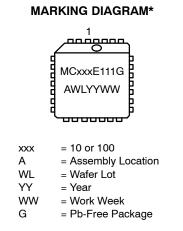
The lowest TPD delay time results from terminating only one output pair, and the greatest TPD delay time results from terminating all the output pairs. This shift is about 10–20 pS in TPD. The skew between any two output pairs within a device is typically about 25 nS. If other output pairs are not terminated, the lowest TPD delay time results from both output pairs and the skew is typically 25 nS. When all outputs are terminated, the greatest TPD (delay time) occurs and all outputs display about the same 10–20 pS increase in TPD, so the relative skew between any two output pairs remains about 25 nS.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The 100 Series contains temperature compensation.

Features

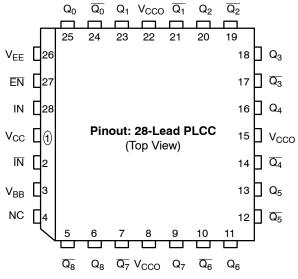
- Guaranteed Skew Spec
- Differential Design
- V_{BB} Output
- PECL Mode Operating Range: V_{CC} = 4.2 V to 5.7 V with V_{EE} = 0 V
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -4.2 V$ to -5.7 V
- Internal Input 50 KΩ Pulldown Resistors
- ESD Protection: > 3 kV Human Body Model
- Meets or Exceeds JEDEC Standard EIA/JESD78 IC Latchup Test
- Moisture Sensitivity: Level 3 (Pb-Free) (For Additional Information, see Application Note <u>AND8003/D</u>)
- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 178 Devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant



ON Semiconductor®

www.onsemi.com

PLCC-28 FN SUFFIX CASE 776-02

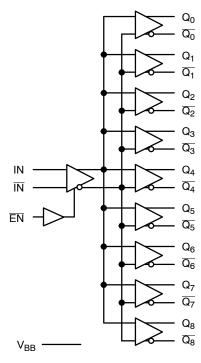


*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping†
MC10E111FNG	PLCC-28 (Pb-Free)	37 Units/Tube
MC10E111FNR2G	PLCC-28 (Pb-Free)	500 Tape & Reel
MC100E111FNG	PLCC-28 (Pb-Free)	37 Units/Tube
MC100E111FNR2G	PLCC-28 (Pb-Free)	500 Tape & Reel

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.


* All V_{CC} and V_{CCO} pins are tied together on the die.

Warning: All V_{CC} , V_{CCO} , and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 28-Lead Pinout

Table 1. PIN DESCRIPTION

PIN	FUNCTION
	ECL Differential Input Pair ECL Enable ECL Differential Outputs Reference Voltage Output Positive Supply Negative Supply No Connect

Figure 2. Logic Symbol

Table 2. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit		
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V		
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V		
		Continuous Surge		50 100	mA		
I _{BB}	V _{BB} Sink/Source			±0.5	mA		
T _A	Operating Temperature Range			-40 to +85	°C		
T _{stg}	Storage Temperature Range		–65 to +150				
θ _{JA} Thermal Resistance (Junction-to-Ambient)		0 lfpm 500 lfpm	PLCC-28 PLCC-28	63.5 43.5	°C/W		
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	PLCC-28	22 to 26	°C/W		
T _{sol}	Wave Solder (Pb-Free)			265	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 3. 10E SERIES PECL DC CHARACTERISTICS	(V _{CCx} = 5.0 V; V _{EE} = 0.0 V (Note 1)
---	---

			−40°C			25°C		85°C			
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		41	60		42	60		43	60	mA
V _{OH}	Output HIGH Voltage (Note 2)	3920	4030	4110	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 2)	3050	3230	3350	3050	3210	3370	3050	3227	3405	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3870	4030	4190	3870	4030	4190	3940	4110	4280	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3050	3285	3520	3050	3285	3520	3050	3302	3555	mV
V _{BB}	Output Voltage Reference	3.6		3.73	3.65		3.75	3.69		3.90	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	3.4		4.6	3.4		4.6	3.4		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
۱ _{IL}	Input LOW Current	0.5			0.5	0.25		0.3	0.2		μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.06 V. 2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V. 3. V_{IHCMR} min and max vary 1:1 with V_{CC}.

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		41	60		42	60		43	60	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1080	-970	-890	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 2)	-1950	-1770	-1650	-1950	-1790	-1630	-1950	-1773	-1595	mV
VIH	Input HIGH Voltage (Single-Ended)	-1130	-970	-810	-1130	-970	-810	-1060	-890	-720	mV
VIL	Input LOW Voltage (Single-Ended)	-1950	-1715	-1480	-1950	-1715	-1480	-1950	-1698	-1445	mV
V_{BB}	Output Voltage Reference	-1.40		-1.27	-1.35		-1.25	-1.31		-1.19	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	-1.6		-0.4	-1.6		-0.4		1.6	-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μA
۱ _{IL}	Input LOW Current	0.5			0.5	0.065		0.3	0.2		μA

Table 4. 10E SERIES NECL DC CHARACTERISTICS (V_{CCx} = 0.0 V; V_{EE} = -5.0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary -0.46 V / +0.06 V. 2. Outputs are terminated through a 50 Ω resistor to V_{CC} -2.0 V.

3. V_{IHCMR} min and max vary 1:1 with V_{CC} .

Table 5. 100E SERIES PECL DC CHARACTERISTICS (V_{CCx} = 5.0 V; V_{EE} = 0.0 V (Note 1))

			-40°C			25°C			85°C		
Symbol	Characteristic		Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		40	60		45	60		50	69	mA
V _{OH}	Output HIGH Voltage (Note 2)	3975	4020	4120	3975	4020	4120	3975	4020	4120	mV
V _{OL}	Output LOW Voltage (Note 2)	3190	3300	3380	3190	3300	3380	3190	3300	3380	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3835	3975	4120	3835	3975	4120	3835	3975	4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3190	3355	3525	3190	3355	3525	3190	3355	3525	mV
V _{BB}	Output Voltage Reference	3.64		3.75	3.62		3.74	3.62		3.74	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	3.4		4.6	3.4		4.6	3.4		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current	0.5			0.5	0.25		0.5	0.2		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.8 V.

2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V

3. V_{IHCMR} min and max vary 1:1 with V_{CC} .

			-40°C			25°C		85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
I_{EE}	Power Supply Current		40	60		45	60		50	69	mA	
V _{OH}	Output HIGH Voltage (Note 2)	-1025	-980	-880	-1025	-980	-880	-1025	-980	-880	mV	
V _{OL}	Output LOW Voltage (Note 2)	-1810	-1700	-1620	-1810	-1700	-1620	-1810	-1700	-1620	mV	
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165	-1025	-880	-1165	-1025	-880	-1165	-1025	-880	mV	
VIL	Input LOW Voltage (Single-Ended)	-1810	-1645	-1475	-1810	-1645	-1475	-1810	-1645	-1475	mV	
V_{BB}	Output Voltage Reference	-1.38		-1.25	-1.38		-1.26	-1.38		-1.26	V	
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	-1.6		-0.4	-1.6		-0.4	-1.6		-0.4	V	
I _{IH}	Input HIGH Current			150			150			150	μA	
۱ _{IL}	Input LOW Current	0.5			0.5	0.25		0.5	0.2		μΑ	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.8 V.

2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V

3. V_{IHCMR} min and max vary 1:1 with V_{CC} .

Table 7. AC CHARACTERISTICS (V_{CCx} = 5.0 V; V_{EE}= 0.0 V or V_{CCx} = 0.0 V; V_{EE}= -5.0 V (Note 1))

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	Maximum Toggle Frequency		800			800			800		MHz
t _{PLH} t _{PHL}	Propagation Delay to Output IN (Diff) (Note 2) IN (SE) (Note 3) Enable (Note 4) Disable (Note 4)	430 380 400 400		630 680 900 900	430 380 450 450		630 680 850 850	430 380 450 450		630 680 850 850	ps
t _s	Setup Time (Note 5) EN to IN	250	0		200	0		200	0		ps
t _H	Hold Time (Note 6) IN to EN	50	-200		0	-200		0	-200		ps
t _R	Release Time (Note 7) EN to IN	350	100		300	100		300	100		ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

 10 Series: V_{EE} can vary -0.46 V / +0.06 V. 100 Series: V_{EE} can vary -0.46 / +0.8 V.

 The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals.

3. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal.

4. Enable is defined as the propagation delay from the 50% point of a negative transition on EN to the 50% point of a positive transition on Q (or a negative transition on Q). Disable is defined as the propagation delay from the 50% point of a positive transition on EN to the 50% point of a negative transition on Q (or a positive transition on Q).

5. The setup time is the minimum time that EN must be asserted prior to the next transition of IN/IN to prevent an output response greater than ± 75 mV to that IN/IN transition (Figure 3).

6. The hold time is the minimum time that EN must remain asserted after a negative going IN or a positive going IN to prevent an output response greater than ±75 mV to that IN/IN transition (Figure 4).

7. The release time is the minimum time that EN must be deasserted prior to the next IN/IN transition to ensure an output response that meets the specified IN to Q propagation delay and output transition times (Figure 5).

8. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device.

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{skew}	Within-Device Skew (Note 8)		25	75		25	50		25	50	ps
t _{JITTER}	Random Clock Jitter (RMS)		< 1	< 2		< 1	< 2		< 1	< 2	ps
V _{PP}	Minimum Input Swing	50			50			50			mV
t _r , t _f	Rise/Fall Time	250	450	650	275	375	600	275	375	600	ps

Table 7. AC CHARACTERISTICS (V_{CCx} = 5.0 V; V_{EE}= 0.0 V or V_{CCx} = 0.0 V; V_{EE}= -5.0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. 10 Series: V_{EE} can vary –0.46 V / +0.06 V.

100 Series: VEE can vary -0.46 / +0.8 V.

2. The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals.

3. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal.

4. Enable is defined as the propagation delay from the 50% point of a negative transition on EN to the 50% point of a positive transition on Q (or a negative transition on Q). Disable is defined as the propagation delay from the 50% point of a positive transition on EN to the 50% point of a negative transition on Q (or a positive transition on Q).

 The setup time is the minimum time that EN must be asserted prior to the next transition of IN/IN to prevent an output response greater than ±75 mV to that IN/IN transition (Figure 3).

6. The hold time is the minimum time that EN must remain asserted after a negative going IN or a positive going IN to prevent an output response greater than ±75 mV to that IN/IN transition (Figure 4).

7. The release time is the minimum time that EN must be deasserted prior to the next IN/IN transition to ensure an output response that meets the specified IN to Q propagation delay and output transition times (Figure 5).

8. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device.

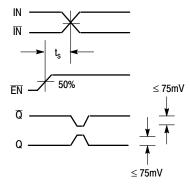
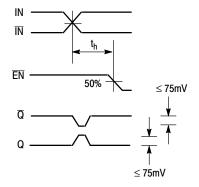



Figure 3. Setup Time

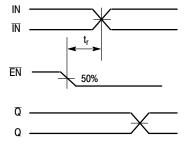


Figure 4. Hold Time

Figure 5. Release Time

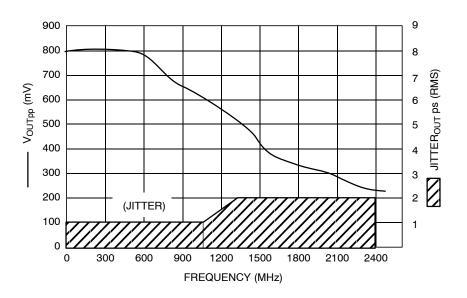
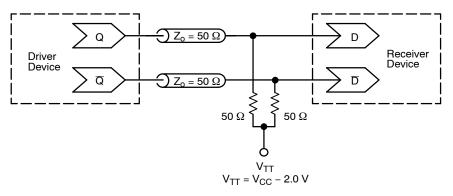
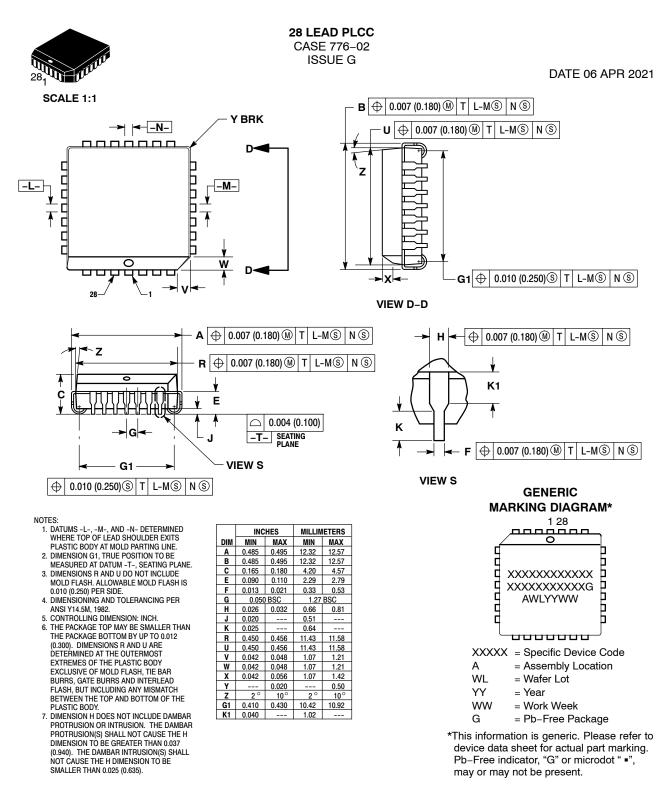


Figure 6. F_{max}/Jitter




Figure 7. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices)

Resource Reference of Application Notes

AN1405/D	_	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DOCUMENT NUMBER:	98ASB42596B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	28 LEAD PLCC		PAGE 1 OF 1

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights or thers.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK854BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK905BCPZ-WP