5 V ECL 8-Bit Ripple Counter

MC10E137

Description

The MC10E137 is a very high speed binary ripple counter. The two least significant bits were designed with very fast edge rates while the more significant bits maintain standard ECLinPS ${ }^{\mathrm{TM}}$ output edge rates. This allows the counter to operate at very high frequencies while maintaining a moderate power dissipation level.

The device is ideally suited for multiple frequency clock generation as well as a counter in a high performance ATE time measurement board.

Both asynchronous and synchronous enables are available to maximize the device's flexibility for various applications. The asynchronous enable input, A_Start, when asserted enables the counter while overriding any synchronous enable signals. The E137 features XORed enable inputs, EN1 and EN2, which are synchronous to the CLK input. When only one synchronous enable is asserted the counter becomes disabled on the next CLK transition; all outputs remain in the previous state poised for the other synchronous enable or A_Start to be asserted to re-enable the counter. Asserting both synchronous enables causes the counter to become enabled on the next transition of the CLK. If EN1 (or EN2) and CLK edges are coincident, sufficient delay has been inserted in the CLK path (to compensate for the XOR gate delay and the internal D-flip flop setup time) to insure that the synchronous enable signal is clocked correctly, hence, the counter is disabled.

All input pins left open will be pulled LOW via an input pulldown resistor. Therefore, do not leave the differential CLK inputs open. Doing so causes the current source transistor of the input clock gate to become saturated, thus upsetting the internal bias regulators and jeopardizing the stability of the device.

The asynchronous Master Reset resets the counter to an all zero state upon assertion.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a $0.01 \mu \mathrm{~F}$ capacitor and limit current sourcing or sinking to 0.5 mA . When not used, V_{BB} should be left open.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

PLCC-28
FN SUFFIX
CASE 776-02

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

Device	Package	Shipping
MC10E137FNG	PLCC-28 (Pb-Free)	37 Units/Tube

- Human Body Model: > 2 kV
- Machine Model: > 200 V
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC
- Moisture Sensitivity Level: 3 (Pb-Free)
- For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- These Devices are Pb -Free, Halogen Free and are RoHS Compliant

Features

- Differential Clock Input and Data Output Pins
- V_{BB} Output for Single-Ended Use
- Synchronous and Asynchronous Enable Pins
- Asynchronous Master Reset
- PECL Mode Operating Range:
- $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$ to 5.7 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- NECL Mode Operating Range:
- $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -5.7 V
- Internal Input $50 \mathrm{k} \Omega$ Pull-down Resistors
- Transistor Count $=330$ devices
- ESD Protection: Latchup Test

* All V_{CC} and $\mathrm{V}_{\mathrm{CCO}}$ pins are tied together on the die.

Warning: All $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCO}}$, and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 28-Lead Pinout

Figure 2. Logic Diagram

Table 2. SEQUENTIAL TRUTH TABLE

Function	EN1	EN2	A_Start	MR	CLK	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0
Reset	X	X	X	H	X	L	L	L	L	L	L	L	L
Count	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline Z \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \text { L } \\ & \text { L } \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$
Stop	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\bar{L}	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{Z} \end{aligned}$	\bar{L}	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\bar{L}	$\stackrel{L}{\mathrm{~L}}$	$\begin{aligned} & \bar{L} \\ & \mathrm{~L} \end{aligned}$	\bar{L}	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
Asynch Start	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline Z \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$
Count	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline Z \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$
Stop	\bar{L}	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\overline{\mathrm{L}}$	$\overline{\mathrm{L}}$	\bar{Z}	$\overline{\mathrm{L}}$	\bar{L}	\bar{L}	\bar{L}	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	\bar{L}	$\overline{\mathrm{L}}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
Synch Start	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{Z} \\ & \mathrm{Z} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$
Stop	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \bar{L} \\ & \mathrm{~L} \end{aligned}$	\bar{L}	$\begin{aligned} & \bar{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{Z} \end{aligned}$	$\begin{aligned} & \bar{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \bar{L} \\ & \mathrm{~L} \end{aligned}$	$\stackrel{\mathrm{L}}{\mathrm{~L}}$	$\stackrel{L}{\mathrm{~L}}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\bar{L}
Count	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline Z \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$
Reset	X	X	X	H	X	L	L	L	L	L	L	L	L

Z = Low to High Transition

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	PECL Mode Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		8	V
V_{EE}	NECL Mode Power Supply	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		-8	V
V_{1}	PECL Mode Input Voltage NECL Mode Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{I}} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} \hline 6 \\ -6 \end{gathered}$	V
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
$\mathrm{T}_{\text {A }}$	Operating Temperature Range			0 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	$\begin{aligned} & \hline 0 \text { lfpm } \\ & 500 \text { lfpm } \end{aligned}$	PLCC-28	$\begin{aligned} & 63.5 \\ & 43.5 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	PLCC-28	22 to 26	${ }^{\circ} \mathrm{C} / \mathrm{W}$
V_{EE}	PECL Operating Range NECL Operating Range			$\begin{gathered} 4.2 \text { to } 5.7 \\ -5.7 \text { to }-4.2 \end{gathered}$	V
$\mathrm{T}_{\text {sol }}$	Wave Solder (Pb-Free)			265	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. 10E SERIES PECL DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CCx}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}\right.$ (Note 1))

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		121	145		121	145		121	145	mA
V_{OH}	Output HIGH Voltage (Note 2)	3980	$\begin{aligned} & 40 \\ & 70 \end{aligned}$	4160	4020	4105	4190	4090	4185	4280	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	3050	3210	3370	3050	3210	3370	3050	3227	3405	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	3830	3995	4160	3870	4030	4190	3940	4110	4280	mV
V_{IL}	Input LOW Voltage (Single-Ended)	3050	3285	3520	3050	3285	3520	3050	3302	3555	mV
V_{BB}	Output Voltage Reference	3.62		3.73	3.65		3.75	3.69		3.81	V
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.2		4.6	2.2		4.6	2.2		4.6	V
$\mathrm{IIH}^{\text {I }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current	0.5	0.3		0.5	0.25		0.3	0.2		$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.

1. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}} . \mathrm{V}_{\mathrm{EE}}$ can vary $-0.46 \mathrm{~V} /+0.06 \mathrm{~V}$.
2. Outputs are terminated through a 50Ω resistor to $\mathrm{V}_{C C}-2.0 \mathrm{~V}$.
3. $\mathrm{V}_{\mathrm{IHCMR}}$ min varies $1: 1$ with V_{EE}, max varies $1: 1$ with V_{CC}.

Table 5. 10E SERIES NECL DC CHARACTERISTICS $\left(\mathrm{V}_{C C x}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}\right.$ (Note 1))

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		121	145		121	145		121	145	mA
V_{OH}	Output HIGH Voltage (Note 2)	-1020	-930	-840	-980	-895	-810	-910	-815	-720	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	-1950	-1790	-1630	-1950	-1790	-1630	-1950	-1773	-1595	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	-1170	-1005	-840	-1130	-970	-810	-1060	-890	-720	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	-1950	-1715	-1480	-1950	-1715	-1480	-1950	-1698	-1445	mV
$\mathrm{V}_{\text {BB }}$	Output Voltage Reference	-1.38		-1.27	-1.35		-1.25	-1.31		-1.19	V
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	-2.8		-0.4	-2.8		-0.4	-2.8		-0.4	V
IIH	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current	0.5	0.3		0.5	0.065		0.3	0.2		$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.

1. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary $-0.46 \mathrm{~V} /+0.06 \mathrm{~V}$.
2. Outputs are terminated through a 50Ω resistor to $\mathrm{V}_{C C}-2.0 \mathrm{~V}$.
3. $\mathrm{V}_{\mathrm{IHCMR}}$ min varies $1: 1$ with V_{EE}, max varies $1: 1$ with V_{CC}.

Table 6. AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CCx}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}\right.$ or $\mathrm{V}_{\mathrm{CCx}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$ (Note NO TAG))

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
fcount	Maximum Count Frequency	1800	2200		1800	2200		1800	2200		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay to Output CLK to Q0 CLK to Q1 CLK to Q2 CLK to Q3 CLK to Q4 CLK to Q5 CLK to Q6 CLK to Q7 A Start to Q0 MR to Q0	$\begin{gathered} 1300 \\ 1600 \\ 1950 \\ 2275 \\ 2625 \\ 2950 \\ 3250 \\ 3575 \\ 950 \\ 700 \end{gathered}$	$\begin{aligned} & 1700 \\ & 2025 \\ & 2425 \\ & 2750 \\ & 3125 \\ & 3450 \\ & 3775 \\ & 4075 \\ & 1325 \\ & 1000 \end{aligned}$	$\begin{aligned} & 2150 \\ & 2500 \\ & 2925 \\ & 3350 \\ & 3750 \\ & 4150 \\ & 4450 \\ & 4800 \\ & 1700 \\ & 1300 \end{aligned}$	$\begin{gathered} 1300 \\ 1600 \\ 1950 \\ 2275 \\ 2625 \\ 2950 \\ 3250 \\ 3575 \\ 950 \\ 700 \end{gathered}$	$\begin{aligned} & 1700 \\ & 2050 \\ & 2450 \\ & 2775 \\ & 3150 \\ & 3475 \\ & 3800 \\ & 4125 \\ & 1325 \\ & 1000 \end{aligned}$	$\begin{aligned} & 2150 \\ & 2500 \\ & 2925 \\ & 3350 \\ & 3750 \\ & 4150 \\ & 4450 \\ & 4800 \\ & 1700 \\ & 1300 \end{aligned}$	$\begin{aligned} & 1350 \\ & 1650 \\ & 2025 \\ & 2350 \\ & 2700 \\ & 3050 \\ & 3375 \\ & 3700 \\ & 950 \\ & 700 \end{aligned}$	$\begin{aligned} & 1750 \\ & 2100 \\ & 2500 \\ & 2850 \\ & 3225 \\ & 3550 \\ & 3925 \\ & 4250 \\ & 1325 \\ & 1000 \end{aligned}$	$\begin{aligned} & 2200 \\ & 2550 \\ & 3000 \\ & 3425 \\ & 3825 \\ & 4250 \\ & 4600 \\ & 4950 \\ & 1700 \\ & 1300 \end{aligned}$	ps
$\mathrm{t}_{\text {s }}$	Setup Time (EN1, EN2)	0	-150		0	-150		0	-150		ps
t_{h}	Hold Time (EN1, EN2)	300	150		300	150		300	150		ps
t_{RR}	Reset Recovery Time MR, A_Start	400	200		400	200		400	200		ps
tpw	Minimum Pulse Width CLK, MR, A_Start	400			400			400			ps
V_{PP}	Input Voltage Swing CLK/CLK (Differential Configuration) (Note 4)	0.25		1.0	0.25		1.0	0.25		1.0	V
$\mathrm{t}_{\text {JITTER }}$	Random Clock Jitter (RMS)		< 1			< 1			< 1		ps
$\begin{aligned} & \overline{t_{r}} \\ & t_{f} \end{aligned}$	$\begin{aligned} & \text { Rise/Fall Times }(20 \%-80 \%) \\ & \text { Q0,Q1 } \\ & \text { Q2 to Q7 } \end{aligned}$	$\begin{aligned} & 150 \\ & 275 \end{aligned}$		$\begin{aligned} & 400 \\ & 600 \end{aligned}$	$\begin{aligned} & 150 \\ & 275 \end{aligned}$		$\begin{aligned} & 400 \\ & 600 \end{aligned}$	$\begin{aligned} & 150 \\ & 275 \end{aligned}$		$\begin{aligned} & 400 \\ & 600 \end{aligned}$	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.
4. Minimum input swing for which AC parameters are guaranteed. Full DC ECL output swings will be generated with only 50 mV input swings.

Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS ${ }^{\text {m }}$ I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

28 LEAD PLCC
CASE 776-02
ISSUE G
DATE 06 APR 2021

ϕ	$0.010(0.250)(\mathrm{S}$	T	L-M (S)

NOTES:

1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.
2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE
3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
5. CONTROLLING DIMENSION: INCH.
6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXTREMES OF THE PLASTIC BODY
EXCLUSIVE OF MOLD FLASH, TIE BAR EXCLUSIVE OF MOLD FLASH, TIE BAR
BURRS, GATE BURRS AND INTERLEAD BURRS, GATE BURRS AND INTERLEAD
FLASH, BUT INCLUDING ANY MIIMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

VIEW D-D

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.485	0.495	12.32	12.57
B	0.485	0.495	12.32	12.57
C	0.165	0.180	4.20	4.57
E	0.090	0.110	2.29	2.79
F	0.013	0.021	0.33	0.53
G	0.050		BSC	1.27
H	0.026	0.032	0.66	0.81
J	0.020	---	0.51	---
K	0.025	---	0.64	---
R	0.450	0.456	11.43	11.58
U	0.450	0.456	11.43	11.58
V	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
X	0.042	0.056	1.07	1.42
Y	---	0.020	---	0.50
Z	2°	10°	2°	10°
G1	0.410	0.430	10.42	10.92
K1	0.040	---	1.02	---

VIEW S
VIEW S

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42596B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 28 LEAD PLCC | PAGE 1 OF 1 |

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter Shift Registers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74HC165N 74HC195N CD4031BE CD4034BE NLV74HC165ADTR2G 5962-9172201M2A MC74HC597ADG MC100EP142MNG
MC100EP016AMNG 5962-9172201MFA TC74HC165AP(F) NTE4517B MC74LV594ADR2G 74HCT4094D-Q100J 74HCT595D, 118
TPIC6C595PWG4 74VHC164MTCX MIC5891BN CD74HC195M96 NLV74HC165ADR2G NPIC6C596ADJ NPIC6C596D-Q100,11
74HC164T14-13 STPIC6D595MTR 74HC164D.653 74HC164D.652 74HCT164D.652 74HCT164D.653 74HC4094D.653
74VHC4020FT(BJ) 74HC194D,653 74HCT164DB. 118 74HCT4094D. 112 74LV164DB. 112 74LVC594AD. 112 HEF4094BT. 653
74VHC164FT(BE) 74HCT594DB. 112 74HCT597DB.112 74LV164D. 112 74LV165D. 112 74LV4094D.112 74LV4094PW. 112
CD74HC165M 74AHC594T16-13 74AHCT595T16-13 74HC164S14-13 74HC595S16-13 74AHCT595S16-13 74AHC595S16-13

