MC100EL38

5 V ECL $\div 2, \div 4 / 6$ Clock Generation Chip

Description

The MC100EL38 is a low skew $\div 2, \div 4 / 6$ clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The device can be driven by either a differential or single-ended ECL or, if positive power supplies are used, PECL input signal.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a $0.01 \mu \mathrm{~F}$ capacitor and limit current sourcing or sinking to 0.5 mA . When not used, V_{BB} should be left open.

The common enable ($\overline{\mathrm{EN}}$) is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. An internal runt pulse could lead to losing synchronization between the internal divider stages. The internal enable flip-flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input.

The Phase_Out output will go HIGH for one clock cycle whenever the $\div 2$ and the $\div 4 / 6$ outputs are both transitioning from a LOW to a HIGH. This output allows for clock synchronization within the system.

Upon startup, the internal flip-flops will attain a random state; therefore, for systems which utilize multiple EL38s, the master reset (MR) input must be asserted to ensure synchronization. For systems which only use one EL38, the MR pin need not be exercised as the internal divider design ensures synchronization between the $\div 2$ and the $\div 4 / 6$ outputs of a single device.

- 50 ps Output-to-Output Skew
- Synchronous Enable/Disable
- Master Reset for Synchronization
- ESD Protection:
- 2 kV Human Body Model
- 100 V Machine Model
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range:
- $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$ to 5.7 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- NECL Mode Operating Range:
- $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -5.7 V
- Internal $75 \mathrm{k} \Omega$ Input Pulldown Resistors on CLK, $\overline{\mathrm{EN}}$, MR, and DIVSEL
- Q Output will Default LOW with Inputs Open or at V_{EE}
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

SOIC-20 WB DW SUFFIX CASE 751D-05

MARKING DIAGRAM*

A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

Device	Package	Shipping †
MC100EL38DWR2G	SOIC-20 WB (Pb-Free)	1000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

- Moisture Sensitivity Level: 3 (Pb-Free)
- For Additional Information, see Application Note AND8003/D
- Flammability Rating:
- UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 388 devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

MC100EL38

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Pinout Assignment (Top View)

Figure 2. Logic Diagram

Table 1. PIN DESCRIPTION

Pin	Function
CLK, CLK	ECL Diff Clock Inputs
$\mathrm{Q}_{0}, \mathrm{Q}_{1} ; \overline{\mathrm{Q}}_{0}, \overline{\mathrm{Q}}_{1}$	ECL Diff $\div 2$ Outputs
$\mathrm{Q}_{2}, \mathrm{Q}_{3} ; \overline{\mathrm{Q}}_{2}, \mathrm{Q}_{3}$	ECL Diff $\div 4 / 6$ Outputs
EN	ECL Sync Enable Input
MR	ECL Master Reset Input
DIVSEL	ECL Frequency Select Input
Phase_Out, Phase_Out	ECL Phase Sync Diff. Signal Output
$V_{B B}$	Reference Voltage Output
V_{CC}	Positive Supply
V_{EE}	Negative Supply

Table 2. FUNCTION TABLE

CLK	EN	MR	Function
Z	L	L	Divide
ZZ	H	L	Hold Q_{0-3}
X	X	H	Reset Q_{0-3}

Z = Low-to-High Transition
ZZ = High-to-Low Transition
X = Don't Care

DIVSEL	$\mathbf{Q}_{\mathbf{2}}, \mathbf{Q}_{\mathbf{3}}$ OUTPUTS
L	Divide by 4
H	Divide by 6

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	PECL Mode Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		8	V
V_{EE}	NECL Mode Power Supply	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		-8	V
V_{1}	PECL Mode Input Voltage NECL Mode Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{1} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} \hline 6 \\ -6 \end{gathered}$	V
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	MA
I_{BB}	$\mathrm{V}_{\text {BB }}$ Sink/Source			± 0.5	mA
T_{A}	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	$\begin{aligned} & 0 \text { Ifpm } \\ & 500 \text { lfpm } \end{aligned}$	SOIC-20 WB	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-20 WB	30 to 35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder (Pb-Free)	<2 to 3 sec @ $260^{\circ} \mathrm{C}$		265	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. 100EL SERIES PECL DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}\right.$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
IEE	Power Supply Current		50	60		50	60		54	65	mA
V_{OH}	Output HIGH Voltage (Note 2)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	3835		4120	3835		4120	3835		4120	mV
V_{IL}	Input LOW Voltage (Single-Ended)	3190		3525	3190		3525	3190		3525	mV
V_{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential) (Note 3)	1.65		4.45	1.65		4.45	1.65		4.45	V
IIH	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
ILL	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary $+0.8 \mathrm{~V} /-0.5 \mathrm{~V}$.
2. Outputs are terminated through a 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
3. $\mathrm{V}_{\mathrm{IHCMR}}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between $\mathrm{V}_{\mathrm{PP}} \mathrm{min}$ and 1 V .

Table 5. 100EL SERIES NECL DC CHARACTERISTICS $\left(\mathrm{V}_{C C}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}\right.$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		50	60		50	60		54	65	mA
V_{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3)	-3.35		-0.55	-3.35		-0.55	-3.35		-0.55	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
ILL	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary $+0.8 \mathrm{~V} /-0.5 \mathrm{~V}$.
2. Outputs are terminated through a 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{IHCMR}}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP} min and 1 V .

Table 6. AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}\right.$ or $\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$ (Note 1)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {max }}$	Maximum Toggle Frequency		TBD			TBD			TBD		GHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay to Output CLK \rightarrow Q (Differential) CLK \rightarrow Q (Single-Ended) CLK \rightarrow Phase_Out (Differential) CLK \rightarrow Phase_Out (Single-Ended) $M R \rightarrow Q$	$\begin{aligned} & 810 \\ & 710 \\ & 800 \\ & 750 \\ & 510 \end{aligned}$		$\begin{gathered} 1010 \\ 1010 \\ 1000 \\ 1050 \\ 810 \end{gathered}$	$\begin{aligned} & 850 \\ & 750 \\ & 840 \\ & 790 \\ & 540 \end{aligned}$		$\begin{gathered} 1050 \\ 1050 \\ 1040 \\ 1090 \\ 840 \end{gathered}$	$\begin{aligned} & 900 \\ & 800 \\ & 890 \\ & 840 \\ & 570 \end{aligned}$		$\begin{aligned} & 1100 \\ & 1100 \\ & 1090 \\ & 1140 \\ & 870 \end{aligned}$	ps
${ }^{\text {tskEw }}$	Within-Device Skew (Note 2) $\begin{aligned} & Q_{0}-Q_{3} \\ & \text { All } \end{aligned}$			$\begin{aligned} & 50 \\ & 75 \end{aligned}$			$\begin{aligned} & 50 \\ & 75 \end{aligned}$			$\begin{aligned} & 50 \\ & 75 \end{aligned}$	ps
$\mathrm{t}_{\text {JITTER }}$	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
	$\begin{aligned} & \text { Part-to-Part } \\ & Q_{0}-Q_{3} \text { (Differential) } \\ & \text { All } \end{aligned}$			$\begin{aligned} & 200 \\ & 240 \end{aligned}$			$\begin{aligned} & 200 \\ & 240 \end{aligned}$			$\begin{aligned} & 200 \\ & 240 \end{aligned}$	
ts	$\begin{aligned} & \hline \text { Setup Time } \\ & \text { EN } \rightarrow \text { CLK } \\ & \text { DIVSEL } \rightarrow \text { CLK } \end{aligned}$		150			150			150		ps
t_{H}	$\begin{aligned} & \text { Hold Time } \\ & \text { CLK } \rightarrow \text { EN } \\ & \text { CLK } \rightarrow \text { Div_Sel } \end{aligned}$		$\begin{aligned} & 150 \\ & 200 \end{aligned}$			$\begin{aligned} & 150 \\ & 200 \end{aligned}$			$\begin{aligned} & 150 \\ & 200 \end{aligned}$		ps
V_{PP}	Input Swing (Note 3)	150		1000	150		1000	150		1000	mV
t_{RR}	Reset Recovery Time			100			100			100	ps
tpw	$\begin{aligned} & \text { Minimum Pulse Width } \\ & \text { CLK } \\ & \text { MR } \end{aligned}$	$\begin{aligned} & 800 \\ & 700 \end{aligned}$			$\begin{aligned} & 800 \\ & 700 \end{aligned}$			$\begin{aligned} & 800 \\ & 700 \end{aligned}$			ps
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Times Q (20\% - 80\%)	280		550	280		550	280		550	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. V_{EE} can vary $+0.8 \mathrm{~V} /-0.5 \mathrm{~V}$.
2. Skew is measured between outputs under identical transitions.
3. $\mathrm{V}_{\mathrm{PP}(\mathrm{min})}$ is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈ 40.

MC100EL38

Figure 3. Timing Diagram

Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

SCALE 1:1

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES

PER ASME Y14.5M, 1994
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS	
	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
b	0.35	0.49
\mathbf{c}	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27 BSC	
H	10.05	10.55
\mathbf{h}	0.25	0.75
L	0.50	0.90
$\boldsymbol{\theta}$	0°	7°

GENERIC
MARKING DIAGRAM*

XXXXX	$=$ Specific Device Code
A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-20 WB | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Generators \& Support Products category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H515001MNTXG PL602-20-K52TC PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30673LFG7 MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30142GGG2 ZL30250LDG1

