MC100EL91

5 V Triple PECL Input to -5 V ECL Output Translator

Description

The MC100EL91 is a triple PECL input to ECL output translator. The device receives standard voltage differential PECL signals, determined by the V_{CC} supply level, and translates them to differential -5 V ECL output signals. (For translation of LVPECL to -3.3 V ECL output, see MC100LVEL91.)

To accomplish the level translation, the EL91 requires three power rails. The V_{CC} supply should be connected to the positive supply, and the V_{EE} pin should be connected to the negative power supply. The GND pins are connected to the system ground plane. Both V_{EE} and V_{CC} should be bypassed to ground via $0.01 \mu \mathrm{~F}$ capacitors.

Under open input conditions, the $\overline{\mathrm{D}}$ input will be biased at $\mathrm{V}_{\mathrm{CC}} / 2$ and the D input will be pulled to GND. This condition will force the Q output to a low, ensuring stability.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a $0.01 \mu \mathrm{~F}$ capacitor and limit current sourcing or sinking to 0.5 mA . When not used, V_{BB} should be left open.

Features

- 670 ps Typical Propagation Delay
- ESD Protection: > 2 kV Human Body Model
- The 100 Series Contains Temperature Compensation
- Operating Range:
- $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.5 V
- $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -5.5 V ; GND $=0 \mathrm{~V}$
- Internal Input Pulldown Resistors
- Q Output will Default LOW with Inputs Open or at GND
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level: 3 (Pb -Free)
- For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL 94 V-0 @ 0.125 in,

Oxygen Index: 28 to 34

- Transistor Count $=282$ devices
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

SOIC-20 WB DW SUFFIX CASE 751D-05

MARKING DIAGRAM*

$$
\begin{array}{ll}
\text { A } & =\text { Assembly Location } \\
\text { WL } & =\text { Wafer Lot } \\
\text { YY } & =\text { Year } \\
\text { WW } & =\text { Work Week } \\
\text { G } & =\text { Pb-Free Package }
\end{array}
$$

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

Device	Package	Shipping †
MC100EL91DWG	SOIC-20 WB (Pb-Free)	38 Units/Tube
MC100EL91DWR2G	SOIC-20 WB (Pb-Free)	$1000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Table 1. PIN DESCRIPTION

PIN	FUNCTION
Dn, $\overline{\overline{ } n}$	PECL Inputs
Qn, $\overline{Q n}$	ECL Outputs
PECL $V_{B B}$	PECL Reference Voltage Output
$V_{C C}$	Positive Supply
$V_{\text {EE }}$	Negative Supply
GND	Ground

**All V_{CC} pins are tied together on the die.
Warning: All $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$, and GND pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 20-Lead Pinout (Top View) and Logic Diagram

Table 2. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	PECL Power Supply	GND $=0 \mathrm{~V}$		8 to 0	V
V_{EE}	NECL Power Supply	GND $=0 \mathrm{~V}$		-8 to 0	V
V_{1}	PECL Input Voltage	GND $=0 \mathrm{~V}$	$\mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	6 to 0	V
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
I_{BB}	PECL V ${ }_{\text {BB }}$ Sink/Source			± 0.5	mA
$\mathrm{T}_{\text {A }}$	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	0 Ifpm 500 lfpm	SOIC-20 WB	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-20 WB	30 to 35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder (Pb-Free)	<2 to 3 sec @ $248^{\circ} \mathrm{C}$		265	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 3. PECL INPUT DC CHARACTERISTICS (VCC $=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$; $\mathrm{GND}=0 \mathrm{~V}$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
ICC	$\mathrm{V}_{\text {CC }}$ Power Supply Current			11		6	11			11	mA
V_{IH}	Input HIGH Voltage (Single-Ended)	3835		4120	3835		4120	3835		4120	mV
V_{IL}	Input LOW Voltage (Single-Ended)	3190		3525	3190		3525	3190		3525	mV
PECL $\mathrm{V}_{\text {BB }}$	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V
$\mathrm{V}_{\text {IHCMR }}$	$\begin{aligned} & \text { Input HIGH Voltage Common Mode } \\ & \text { Range (Differential) (Note 2) } \\ & V_{\mathrm{PP}}<500 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{PP}} \geq 500 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$		$\begin{aligned} & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$		$\begin{aligned} & 4.8 \\ & 4.8 \end{aligned}$	V
$\mathrm{I}_{\mathbf{I H}}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}} . \mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to $+5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.20 \mathrm{~V}$ to -5.5 V .
2. $\mathrm{V}_{\mathrm{IHCMR}}$ min varies $1: 1$ with $G N D$. $\mathrm{V}_{\mathrm{IHCMR}}$ max varies $1: 1$ with V_{CC}.

Table 4. NECL OUTPUT DC CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ to $5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$; $\mathrm{GND}=0 \mathrm{~V}$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	$\mathrm{V}_{\text {EE }}$ Power Supply Current			28		22	28			30	mA
V_{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V_{OL}	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Output parameters vary $1: 1$ with GND . $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to $+5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.20 \mathrm{~V}$ to -5.5 V .
2. Outputs are terminated through a 50Ω resistor to GND -2.0 V

Table 5. AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$; $\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$; $\mathrm{GND}=0 \mathrm{~V}$ (Note 4))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {max }}$	Maximum Toggle Frequency		700			700			700		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay D to Q Differential Single-Ended.	$\begin{aligned} & 540 \\ & 490 \end{aligned}$	$\begin{aligned} & 640 \\ & 640 \end{aligned}$	$\begin{aligned} & 740 \\ & 790 \end{aligned}$	$\begin{aligned} & 570 \\ & 520 \end{aligned}$	$\begin{aligned} & 670 \\ & 670 \end{aligned}$	$\begin{aligned} & 770 \\ & 820 \end{aligned}$	$\begin{aligned} & 610 \\ & 560 \end{aligned}$	$\begin{aligned} & 710 \\ & 710 \end{aligned}$	$\begin{aligned} & 810 \\ & 860 \end{aligned}$	ps
${ }^{\text {tskEW }}$	Skew Output-to-Output (Note 1) Part-to-Part (Differential) (Note 1) Cycle (Differential) (Note 2)		$\begin{aligned} & 40 \\ & 25 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$		$\begin{aligned} & 40 \\ & 25 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$		$\begin{aligned} & 40 \\ & 25 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	ps
$\mathrm{t}_{\text {JITTER }}$	Random Clock Jitter @ 700 MHz		1.2			1.2			1.2		pS(RMS)
V_{PP}	Input Swing (Note 3)	200		1000	200		1000	200		1000	mV
t_{t}	$\begin{aligned} & \text { Output Rise/Fall Times Q } \\ & (20 \%-80 \%) \end{aligned}$	270	400	530	270	400	530	270	400	530	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Skews are valid across specified voltage range, part-to-part skew is for a given temperature.
2. Duty cycle skew is the difference between a $t_{\text {PLH }}$ and $t_{\text {PHL }}$ propagation delay through a device.
3. $\mathrm{V}_{\mathrm{PP}}(\mathrm{min})$ is the minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈ 40.
4. $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to $+5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.20 \mathrm{~V}$ to -5.5 V . Outputs are terminated through a 50Ω resistor to $\mathrm{GND}-2.0 \mathrm{~V}$.

Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V) $^{\text {AN1503/D }}$ - ECLinPS ${ }^{\text {m }}$ I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

SCALE 1:1

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES

PER ASME Y14.5M, 1994
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS	
	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
b	0.35	0.49
\mathbf{c}	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27 BSC	
H	10.05	10.55
\mathbf{h}	0.25	0.75
L	0.50	0.90
$\boldsymbol{\theta}$	0°	7°

GENERIC
MARKING DIAGRAM*

XXXXX	$=$ Specific Device Code
A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-20 WB | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW\#PBF LTC1045CN\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ

