3.3 V/5 V ECL Differential Receiver/Driver with High Gain and Enable Output

MC100EP16VC

Description

The EP16VC is a differential receiver/driver. The device is functionally equivalent to the EP16 and LVEP16 devices but with high gain and enable output.

The EP16VC provides an $\overline{E N}$ input which is synchronized with the data input (D) signal in a way that provides glitchless gating of the QHG and $\overline{\mathrm{QHG}}$ outputs.

When the $\overline{\mathrm{EN}}$ signal is LOW, the input is passed to the outputs and the data output equals the data input. When the data input is HIGH and $\overline{\mathrm{EN}}$ goes HIGH, it will force the Q_{HG} LOW and the $\overline{\mathrm{Q}_{\mathrm{HG}}}$ HIGH on the next negative transition of the data input. If the data input is LOW when the EN goes HIGH, the next data transition to a HIGH is ignored and Q_{HG} remains LOW and $\overline{\mathrm{Q}_{\mathrm{HG}}}$ remains HIGH. The next positive transition of the data input is not passed on to the data outputs under these conditions. The Q_{HG} and $\overline{\mathrm{Q}_{\mathrm{HG}}}$ outputs remain in their disabled state as long as the EN input is held HIGH. The EN input has no influence on the $\overline{\mathrm{Q}}$ output and the data input is passed on (inverted) to this output whether $\overline{\text { EN }}$ is HIGH or LOW. This configuration is ideal for crystal oscillator applications where the oscillator can be free running and gated on and off synchronously without adding extra counts to the output.
The $\mathrm{V}_{\mathrm{BB}} / \overline{\mathrm{D}}$ pin is internally dedicated and available for differential interconnect. $\mathrm{V}_{\mathrm{BB}} / \overline{\mathrm{D}}$ may rebias AC coupled inputs. When used, decouple $\mathrm{V}_{\mathrm{BB}} / \overline{\mathrm{D}}$ and V_{CC} via a $0.01 \mu \mathrm{~F}$ capacitor and limit current sourcing or sinking to 1.5 mA . When not used, $\mathrm{V}_{\mathrm{BB}} / \overline{\mathrm{D}}$ should be left open.

The 100 Series contains temperature compensation.

Features

- 310 ps Typical Prop Delay $\overline{\mathrm{Q}}$, 380 ps Typical Prop Delay QHG, $\overline{\mathrm{QHG}}$
- Gain > 200
- Maximum Frequency $>3 \mathrm{GHz}$ Typical
- PECL Mode Operating Range:
- $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 5.5 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- NECL Mode Operating Range:
- $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -5.5 V
- Open Input Default State
- Q_{HG} Output Will Default LOW with D Inputs Open or at V_{EE}
- V_{BB} Output
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION

Device	Package	Shipping †
MC100EP16VCDTR2G	TSSOP-8	$2500 /$
	(Pb-Free)	Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MC100EP16VC

Table 1. PIN DESCRIPTION

Pin	Function
D^{\star}	ECL Data Input
$\overline{\mathrm{Q}}$	ECL Data Output
$\mathrm{Q}_{\mathrm{HG}}, \mathrm{Q}_{\mathrm{HG}}$	ECL High Gain Data Outputs
EN^{\star}	ECL Enable Input
$\mathrm{V}_{\mathrm{BB}} / \mathrm{D}$	Reference Voltage Output / ECL Data Input
V_{CC}	Positive Supply
V_{EE}	Negative Supply

*Pins will default LOW when left open.

Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

Table 2. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor	$75 \mathrm{k} \Omega$
Internal Input Pullup Resistor	N/A
ESD Protection Human Body Model Machine Model Charged Device Model	$\begin{gathered} >4 \mathrm{kV} \\ >200 \mathrm{~V} \\ >2 \mathrm{kV} \end{gathered}$
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb-Free Pkg
TSSOP-8	Level 3
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	167 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	PECL Mode Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		6	V
V_{EE}	NECL Mode Power Supply	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		-6	V
V_{1}	PECL Mode Input Voltage NECL Mode Input Voltage	$\begin{aligned} & V_{E E}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{1} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} \hline 6 \\ -6 \end{gathered}$	V
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} \hline 50 \\ 100 \end{gathered}$	mA
$\mathrm{I}_{\text {BB }}$	$\mathrm{V}_{\text {BB }}$ Sink/Source			± 1.5	mA
$\mathrm{T}_{\text {A }}$	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	$\begin{aligned} & \hline 0 \text { lfpm } \\ & 500 \mathrm{lfpm} \end{aligned}$		$\begin{aligned} & 185 \\ & 140 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board		41 to 44	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder (Pb-Free)			265	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board - 2S2P (2 signal, 2 power)

Table 4. 100EP DC CHARACTERISTICS, PECL (VCC=3.3V, $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	27	37	47	32	42	52	34	44	54	mA
V_{OH}	Output HIGH Voltage (Note 2)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	1305	1400	1555	1305	1400	1555	1305	1400	1555	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	2075		2420	2075		2420	2075		2420	mV
V_{IL}	Input LOW Voltage (Single-Ended)	1355		1675	1355		1675	1355		1675	mV
V_{BB}	Output Voltage Reference	1775	1890	2045	1775	1890	2045	1775	1890	2045	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.0		3.3	2.0		3.3	2.0		3.3	V
IIH	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current D	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

1. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V .
2. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

Table 5. 100EP DC CHARACTERISTICS, PECL $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}\right.$ (Note 1))

	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
Symbol		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	27	37	47	32	42	52	34	44	54	mA
V_{OH}	Output HIGH Voltage (Note 2)	3855	3980	4105	3855	3980	4105	3855	3980	4105	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	3005	3100	3255	3005	3100	3255	3005	3100	3255	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	3775		4120	3775		4120	3775		4120	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	3055		3375	3055		3375	3055		3375	mV
$\mathrm{V}_{\text {BB }}$	Output Voltage Reference	3475	3490	3705	3475	3490	3705	3475	3490	3705	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.0		5.0	2.0		5.0	2.0		5.0	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current D	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

1. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}} . \mathrm{V}_{\mathrm{EE}}$ can vary +2.0 V to -0.5 V .
2. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
3. $\mathrm{V}_{\mathrm{IHCMR}}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{IHCMR}}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{IHCMR}}$ range is referenced to the most positive side of the differential input signal.

Table 6. 100EP DC CHARACTERISTICS, NECL ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.5 \mathrm{~V}$ to -3.0 V (Note 1))

	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
Symbol		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	27	37	47	32	42	52	34	44	54	mA
V_{OH}	Output HIGH Voltage (Note 2)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	-1995	-1900	-1745	-1995	-1900	-1745	-1995	-1900	-1745	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	-1945		-1625	-1945		-1625	-1945		-1625	mV
V_{BB}	Output Voltage Reference	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	$\mathrm{V}_{\mathrm{EE}}+2.0$		0.0	$\mathrm{V}_{\mathrm{EE}}+2.0$		0.0	$\mathrm{V}_{\mathrm{EE}}+2.0$		0.0	V
IIH	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
1 IL	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

1. Input and output parameters vary $1: 1$ with V_{CC}.
2. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\text {EE }}, \mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

MC100EP16VC

Table 7. AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}\right.$ to -5.5 V or $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {max }}$	Maximum Frequency (Figure 2)		> 3			>3			> 3		GHz
$\begin{aligned} & \text { tpLH, } \\ & t_{\text {tpHI }} \end{aligned}$	Propagation Delay (Differential) \bar{Q} (Differential) QHG, QHG (Single-Ended) \bar{Q} (Single-Ended) QHG, QHG	$\begin{array}{r} 200 \\ 250 \\ 250 \\ 300 \\ \hline \end{array}$	$\begin{aligned} & 280 \\ & 360 \\ & 330 \\ & 410 \\ & \hline \end{aligned}$	$\begin{aligned} & 350 \\ & 450 \\ & 400 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \\ & 300 \\ & 350 \end{aligned}$	$\begin{array}{r} 310 \\ 380 \\ 360 \\ 430 \\ \hline \end{array}$	$\begin{array}{r} 400 \\ 500 \\ 450 \\ 550 \\ \hline \end{array}$	$\begin{aligned} & 275 \\ & 325 \\ & 325 \\ & 375 \\ & \hline \end{aligned}$	$\begin{aligned} & 340 \\ & 430 \\ & 390 \\ & 480 \\ & \hline \end{aligned}$	$\begin{array}{r} 425 \\ 525 \\ 475 \\ 575 \\ \hline \end{array}$	ps
ts	$\begin{gathered} \text { Setup Time } \\ E N=L \text { to } D \\ E N=H \text { to } D \end{gathered}$	$\begin{gathered} \hline 50 \\ 100 \end{gathered}$	$\begin{aligned} & 15 \\ & 60 \end{aligned}$		$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{gathered} 5 \\ 40 \end{gathered}$		$\begin{gathered} \hline 50 \\ 100 \end{gathered}$	$\begin{aligned} & 18 \\ & 10 \end{aligned}$		ps
t_{H}	Hold Time $E N=L$ to D $E N=H$ to D	$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 50 \\ & 15 \end{aligned}$		$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 40 \\ & 20 \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \end{aligned}$	$\begin{gathered} 5 \\ 20 \end{gathered}$		ps
${ }^{\text {tskew }}$	Duty Cycle Skew (Note 2)		5.0	20		5.0	20		5.0	20	ps
$\mathrm{t}_{\text {JITTER }}$	RMS Random Clock Jitter (Figure 2)		0.2	<1		0.2	<1		0.2	< 1	ps
V_{PP}	Input Voltage Swing HG (Differential Configuration) Q	$\begin{gathered} 25 \\ 150 \end{gathered}$	$\begin{aligned} & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 1200 \\ & 1200 \end{aligned}$	$\begin{gathered} 25 \\ 150 \end{gathered}$	$\begin{aligned} & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 1200 \\ & 1200 \end{aligned}$	$\begin{gathered} \hline 25 \\ 150 \end{gathered}$	$\begin{aligned} & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 1200 \\ & 1200 \end{aligned}$	mV
$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	Output Rise/Fall Times Q (20\%-80\%) QHG, QHG	$\begin{aligned} & 200 \\ & 70 \end{aligned}$	$\begin{aligned} & 300 \\ & 130 \end{aligned}$	$\begin{aligned} & 400 \\ & 220 \end{aligned}$	$\begin{gathered} 250 \\ 80 \end{gathered}$	$\begin{aligned} & 350 \\ & 150 \end{aligned}$	$\begin{aligned} & 450 \\ & 240 \end{aligned}$	$\begin{aligned} & 250 \\ & 100 \end{aligned}$	$\begin{aligned} & 350 \\ & 170 \end{aligned}$	$\begin{aligned} & 500 \\ & 270 \end{aligned}$	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50Ω to $\mathrm{V}_{\mathrm{cc}}-2.0 \mathrm{~V}$.
2. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

Figure 2. $\mathrm{F}_{\text {max }} / \mathrm{Jitter}$ for QHG, QHG Output

MC100EP16VC

Figure 3. $\mathbf{F}_{\text {max }} /$ Jitter for \mathbf{Q} Output

Figure 4. Fmax $_{\text {ma }}$ Jitter for QHG, QHG Output

MC100EP16VC

Figure 5. $\mathbf{F}_{\text {max }} /$ Jitter for \mathbf{Q} Output

Figure 6. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

Res	ference of Application Notes
AN1405/D	- ECL Clock Distribution Techniques
AN1406/D	- Designing with PECL (ECL at +5.0 V)
AN1503/D	- ECLinPS ${ }^{\text {m }}$ I/O SPiCE Modeling Kit
AN1504/D	- Metastability and the ECLinPS Family
AN1568/D	- Interfacing Between LVDS and ECL
AN1672/D	The ECL Translator Guide
AND8001/D	- Odd Number Counters Design
AND8002/D	- Marking and Date Codes
AND8020/D	- Termination of ECL Logic Devices
AND8066/D	- Interfacing with ECLinPS
AND8090/D	- AC Characteristics of ECL Devices

TSSOP 8

CASE 948R-02

ISSUE A
DATE 04/07/2000

SCALE 2:1

notes:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PROTRUSI
PER SIDE
5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	2.90	3.10	0.114	0.122		
B	2.90	3.10	0.114	0.122		
C	0.80	1.10	0.031	0.043		
D	0.05	0.15	0.002	0.006		
F	0.40	0.70	0.016	0.028		
G	0.65 BSC		0.026 BSC			
K	0.25		0.40	0.010		0.016
L	4.90 BSC		0.193 BSC			
M	0°		6°	0°		6°

| DOCUMENT NUMBER: | 98AONO0236D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP 8 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bus Transceivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74LS645N PI74LVCC3245AS 5962-8683401DA 5962-8968201LA 5962-8953501KA 5962-86834012A 5962-7802002MFA TC74VCX164245(EL,F MC74LCX245MNTWG TC7WPB8306L8X,LF(S 74LVX245MTC 74ALVC16245MTDX 74LCXR162245MTX 74LVXC3245MTCX 74VHC245M 74VHC245MX JM38510/65553BRA FXL2TD245L10X 74LVC1T45GM,115 74LVC245ADTR2G TC74AC245P(F) SNJ54LS245FK 74LVT245BBT20-13 74AHC245D. 112 74AHCT245D. 112 SN74LVCH16952ADGGR
CY74FCT16245TPVCT 74AHCT245PW. 118 74LV245DB. 118 74LV245D. 112 74LV245PW. 112 74LVC2245APW. 112 74LVCH245AD. 112 SN75138NSR AP54RHC506ELT-R AP54RHC506BLT-R 74LVCR162245ZQLR SN74LVCR16245AZQLR MC100EP16MNR4G MC100LVEP16MNR4G 714100R 74HCT643N MC100EP16DTR2G 5962-9221403MRA 74ALVC164245PAG 74FCT16245ATPAG 74FCT16245ATPVG 74FCT16245ETPAG 74FCT245CTSOG 74LVC162245APAG8

