# **3.3V / 5V ECL Differential Phase-Frequency Detector**

## Description

The MC100EP40 is a three-state phase-frequency detector intended for phase-locked loop applications which require a minimum amount of phase and frequency difference at lock. Advanced design significantly reduces the dead zone of the detector. For proper operation, the input edge rate of the R and V inputs should be less than 5 ns. The device is designed to work with a 3.3 V / 5 V power supply.

When Reference (R) and Feedback (FB) inputs are unequal in frequency and/or phase the differential UP (U) and DOWN (D) outputs will provide pulse streams which when subtracted and integrated provide an error voltage for control of a VCO.

When Reference (R) and Feedback (FB) inputs are 80 ps or less in phase difference, the Phase Lock Detect pin will indicate lock by a high state (V<sub>OH</sub>). The V<sub>TX</sub> (V<sub>TR</sub>,  $\overline{V_{TR}}$ ,  $V_{TFB}$ ,  $\overline{V_{TFB}}$ ) pins offer an internal termination network for 50  $\Omega$  line impedance environment shown in Figure 2. An external sinking supply of V<sub>CC</sub>-2 V is required on V<sub>TX</sub> pin(s). If you short the two differential pins V<sub>TR</sub> and  $\overline{V_{TR}}$  (or V<sub>TFB</sub> and  $\overline{V_{TFB}}$ ) together, you provide a 100  $\Omega$  termination resistance. For more information on termination of logic devices, see AND8020.

The V<sub>BB</sub> pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V<sub>BB</sub> as a switching reference voltage. V<sub>BB</sub> may also rebias AC coupled inputs. When used, decouple V<sub>BB</sub> and V<sub>CC</sub> via a 0.01  $\mu$ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V<sub>BB</sub> should be left open.

For more information on Phase Lock Loop operation, refer to AND8040.

Special considerations are required for differential inputs under No Signal conditions to prevent instability.

## Features

- Maximum Frequency > 2 GHz Typical
- Fully Differential
- Advanced High Band Output Swing of 400 mV
- Theoretical Gain = 1.11
- T<sub>rise</sub> 97 ps Typical, F<sub>fall</sub> 70 ps Typical
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range:  $V_{CC} = 3.0 \text{ V}$  to 5.5 V with  $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range:  $V_{CC} = 0 V$ with  $V_{EE} = -3.0 V$  to -5.5 V
- 50  $\Omega$  Internal Termination Resistor
- These are Pb–Free Devices



## **ON Semiconductor®**

http://onsemi.com



#### ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.



Warning: All  $V_{CC}$  and  $V_{EE}$  pins must be externally connected to Power Supply to guarantee proper operation.

## Figure 1. 20-Lead Pinout (Top View)

| Table | 1. | PIN | DESCRIPTION |
|-------|----|-----|-------------|
| Table |    |     |             |

| PIN               | FUNCTION                                    |
|-------------------|---------------------------------------------|
| U, <del>U</del>   | ECL Up Differential Outputs                 |
| D, D              | ECL Down Differential Outputs               |
| FB, <del>FB</del> | ECL Feedback Differential Inputs            |
| R, <del>R</del>   | ECL Reference Differential Inputs           |
| PLD               | ECL Phase Lock Detect Function              |
| VTR               | ECL Internal Termination for R              |
| VTR               | ECL Internal Termination for $\overline{R}$ |
| VTFB              | ECL Internal Termination for FB             |
| VTFB              | ECL Internal Termination for FB             |
| V <sub>BB</sub>   | Reference Voltage Output                    |
| V <sub>CC</sub>   | Positive Supply                             |
| V <sub>EE</sub>   | Negative Supply                             |
| NC                | No Connect                                  |



## Figure 2. Logic Diagram

## Table 2. ATTRIBUTES

| Characteris                                            | Value                       |           |             |  |  |  |
|--------------------------------------------------------|-----------------------------|-----------|-------------|--|--|--|
| Internal Input Pulldown Resistor                       | N/A                         |           |             |  |  |  |
| Internal Input Pullup Resistor                         |                             | Ν         | /A          |  |  |  |
| ESD Protection                                         | > 4 kV<br>> 100 V<br>> 2 kV |           |             |  |  |  |
| Moisture Sensitivity, Indefinite Time                  | e Out of Drypack (Note 1)   | Pb Pkg    | Pb-Free Pkg |  |  |  |
|                                                        | TSSOP-20                    | Level 1   | Level 3     |  |  |  |
| Flammability Rating                                    | Oxygen Index: 28 to 34      | UL 94 V–0 | @ 0.125 in  |  |  |  |
| Transistor Count                                       | 699 D                       | evices    |             |  |  |  |
| Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test |                             |           |             |  |  |  |

1. For additional information, see Application Note AND8003/D.

## Table 3. MAXIMUM RATINGS

| Symbol               | Parameter                                          | Condition 1                                    | Condition 2                                                           | Rating      | Unit         |
|----------------------|----------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|-------------|--------------|
| V <sub>CC</sub>      | PECL Mode Power Supply                             | $V_{EE} = 0 V$                                 |                                                                       | 6           | V            |
| $V_{EE}$             | NECL Mode Power Supply                             | $V_{CC} = 0 V$                                 |                                                                       | -6          | V            |
| VI                   | PECL Mode Input Voltage<br>NECL Mode Input Voltage | V <sub>EE</sub> = 0 V<br>V <sub>CC</sub> = 0 V | $\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$ | 6<br>6      | V<br>V       |
| l <sub>out</sub>     | Output Current                                     | Continuous<br>Surge                            |                                                                       | 50<br>100   | mA<br>mA     |
| I <sub>BB</sub>      | V <sub>BB</sub> Sink/Source                        |                                                |                                                                       | ± 0.5       | mA           |
| T <sub>A</sub>       | Operating Temperature Range                        |                                                |                                                                       | -40 to +85  | °C           |
| T <sub>stg</sub>     | Storage Temperature Range                          |                                                |                                                                       | -65 to +150 | °C           |
| $\theta_{JA}$        | Thermal Resistance (Junction-to-Ambient)           | 0 lfpm<br>500 lfpm                             | TSSOP-20<br>TSSOP-20                                                  | 140<br>100  | °C/W<br>°C/W |
| $\theta_{\text{JC}}$ | Thermal Resistance (Junction-to-Case)              | Standard Board                                 | TSSOP-20                                                              | 23 to 41    | °C/W         |
| T <sub>sol</sub>     | Wave Solder Pb<br>Pb-Free                          |                                                |                                                                       | 265<br>265  | °C           |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

|                 |                                                                               | –40°C        |              |              | 25°C         |              |              |              |              |              |      |
|-----------------|-------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------|
| Symbol          | Characteristic                                                                | Min          | Тур          | Max          | Min          | Тур          | Max          | Min          | Тур          | Max          | Unit |
| I <sub>EE</sub> | Power Supply Current                                                          | 100          | 128          | 160          | 100          | 130          | 160          | 110          | 140          | 170          | mA   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 3)                                                  | 2225         | 2350         | 2475         | 2275         | 2400         | 2525         | 2300         | 2425         | 2550         | mV   |
| V <sub>OL</sub> | Output LOW Voltage (Note 3) U, U, B, B<br>PLD                                 | 1775<br>1305 | 1900<br>1480 | 2025<br>1605 | 1800<br>1305 | 1925<br>1480 | 2050<br>1605 | 1825<br>1305 | 1950<br>1480 | 2075<br>1605 | mV   |
| V <sub>IH</sub> | Input HIGH Voltage (Single–Ended)                                             |              |              | 2420         | 2075         |              | 2420         | 2075         |              | 2420         | mV   |
| V <sub>IL</sub> | Input LOW Voltage (Single-Ended)                                              | 1305         |              | 1675         | 1305         |              | 1675         | 1305         |              | 1675         | mV   |
| $V_{BB}$        | Output Voltage Reference                                                      | 1775         | 1875         | 1975         | 1775         | 1875         | 1975         | 1775         | 1875         | 1975         | mV   |
| VIHCMR          | Input HIGH Voltage Common Mode<br>Range (Differential Configuration) (Note 4) | 2.0          |              | 3.3          | 2.0          |              | 3.3          | 2.0          |              | 3.3          | V    |
| I <sub>IH</sub> | Input HIGH Current                                                            |              |              | 150          |              |              | 150          |              |              | 150          | μΑ   |
| IIL             | Input LOW Current                                                             | -150         |              |              | -150         |              |              | -150         |              |              | μA   |

## Table 4. 100EP DC CHARACTERISTICS, PECL V<sub>CC</sub> = 3.3 V, V<sub>EE</sub> = 0 V (Note 2)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

2. Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary +0.3 V to –2.2 V.

3. All loading with 50  $\Omega$  to V<sub>CC</sub> – 2.0 V.

4. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

|                 |                                                                               |              | <b>−40°C</b> |              | 25°C         |              |              | 85°C         |              |              |      |
|-----------------|-------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------|
| Symbol          | Characteristic                                                                | Min          | Тур          | Max          | Min          | Тур          | Max          | Min          | Тур          | Max          | Unit |
| I <sub>EE</sub> | Power Supply Current (Note 6)                                                 | 100          | 128          | 160          | 100          | 130          | 160          | 110          | 140          | 170          | mA   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 7)                                                  | 3925         | 4050         | 4175         | 3975         | 4100         | 4225         | 4000         | 4125         | 4250         | mV   |
| V <sub>OL</sub> | Output LOW Voltage (Note 7) U, U, B, B<br>PLD                                 | 3475<br>3005 | 3600<br>3180 | 3725<br>3305 | 3500<br>3005 | 3625<br>3180 | 3750<br>3305 | 3525<br>3005 | 3650<br>3180 | 3775<br>3305 | mV   |
| VIH             | Input HIGH Voltage (Single–Ended)                                             |              |              | 4120         | 3775         |              | 4120         | 3775         |              | 4120         | mV   |
| VIL             | Input LOW Voltage (Single-Ended)                                              | 3005         |              | 3375         | 3005         |              | 3375         | 3005         |              | 3375         | mV   |
| V <sub>BB</sub> | Output Voltage Reference                                                      | 3475         | 3575         | 3675         | 3475         | 3575         | 3675         | 3475         | 3575         | 3675         | mV   |
| VIHCMR          | Input HIGH Voltage Common Mode<br>Range (Differential Configuration) (Note 8) | 2.0          |              | 5.0          | 2.0          |              | 5.0          | 2.0          |              | 5.0          | V    |
| I <sub>IH</sub> | Input HIGH Current                                                            |              |              | 150          |              |              | 150          |              |              | 150          | μΑ   |
| I               | Input LOW Current                                                             | -150         |              |              | -150         |              |              | -150         |              |              | μΑ   |

#### Table 5. 100EP DC CHARACTERISTICS, PECL $V_{CC} = 5.0 \text{ V}, V_{EE} = 0 \text{ V}$ (Note 5)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Input and output parameters vary 1:1 with  $V_{CC}$ .  $V_{EE}$  can vary +0.3 V to -2.2 V. 6. For  $(V_{CC} - V_{EE}) > 3.3 V$ , 5  $\Omega$  to 10  $\Omega$  in line with  $V_{EE}$  required for maximum thermal protection at elevated temperatures. Recommend  $V_{CC}-V_{EE}$  operation at  $\leq 3.3 V$ . 7. All loading with 50  $\Omega$  to  $V_{CC} - 2.0 V$ .

8. V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

|                 |                                                                                   | <b>−40°C</b>          |                |                | 25°C            |                |                | 85°C            |                |                |      |
|-----------------|-----------------------------------------------------------------------------------|-----------------------|----------------|----------------|-----------------|----------------|----------------|-----------------|----------------|----------------|------|
| Symbol          | Characteristic                                                                    | Min                   | Тур            | Max            | Min             | Тур            | Max            | Min             | Тур            | Max            | Unit |
| I <sub>EE</sub> | Power Supply Current (Note 10)                                                    | 100                   | 128            | 160            | 100             | 130            | 160            | 110             | 140            | 170            | mA   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 11)                                                     | -1075                 | -950           | -825           | -1025           | -900           | -775           | -1000           | -875           | -750           | mV   |
| V <sub>OL</sub> | Output LOW Voltage (Note 11)<br>U, Ū, B, B<br>PLD                                 | -1525<br>-1995        | -1400<br>-1820 | -1275<br>-1695 | -1500<br>-1995  | -1375<br>-1820 | -1250<br>-1695 | -1475<br>-1995  | -1350<br>-1820 | -1225<br>-1695 | mV   |
| V <sub>IH</sub> | Input HIGH Voltage (Single–Ended)                                                 | -1225                 |                | -880           | -1225           |                | -880           | -1225           |                | -880           | mV   |
| V <sub>IL</sub> | Input LOW Voltage (Single–Ended)                                                  | -1995                 |                | -1625          | -1995           |                | -1625          | -1995           |                | -1625          | mV   |
| $V_{BB}$        | Output Voltage Reference                                                          | -1525                 | -1425          | -1325          | -1525           | -1425          | -1325          | -1525           | -1425          | -1325          | mV   |
| VIHCMR          | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 12) | V <sub>EE</sub> + 2.0 |                | 0.0            | V <sub>EE</sub> | + 2.0          | 0.0            | V <sub>EE</sub> | + 2.0          | 0.0            | V    |
| IIH             | Input HIGH Current                                                                |                       |                | 150            |                 |                | 150            |                 |                | 150            | μΑ   |
| IIL             | Input LOW Current                                                                 | -150                  |                |                | -150            |                |                | -150            |                |                | μΑ   |

## Table 6. 100EP DC CHARACTERISTICS, NECL V<sub>CC</sub> = 0 V; V<sub>EE</sub> = -5.5 V to -3.0 V (Note 9)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

9. Input and output parameters vary 1:1 with V<sub>CC</sub>.

10. For ( $V_{CC} - V_{EE}$ ) > 3.3 V, 5  $\Omega$  to 10  $\Omega$  in line with  $V_{EE}$  required for maximum thermal protection at elevated temperatures. Recommend  $V_{CC} - V_{EE}$  operation at  $\leq$  3.3 V.

11. All loading with 50  $\Omega$  to V<sub>CC</sub> – 2.0 V.

12. V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

|                                        |                                                                | <b>−40°C</b> |     |      | 25°C |     |      |     |     |      |      |
|----------------------------------------|----------------------------------------------------------------|--------------|-----|------|------|-----|------|-----|-----|------|------|
| Symbol                                 | Characteristic                                                 | Min          | Тур | Max  | Min  | Тур | Max  | Min | Тур | Max  | Unit |
| f <sub>max</sub>                       | Maximum Frequency (Figure 3)                                   |              | > 2 |      |      | > 2 |      |     | > 2 |      | GHz  |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Propagation Delay to FB to D/U<br>Output Differential R to D/U | 400          | 525 | 700  | 410  | 550 | 750  | 450 | 575 | 775  | ps   |
| <b>t</b> JITTER                        | Random Clock Jitter (Figure 3)                                 |              | 0.2 | < 1  |      | 0.2 | < 1  |     | 0.2 | < 1  | ps   |
| V <sub>PP</sub>                        | Input Voltage Swing (Differential Configur-<br>ation)          | 150          | 800 | 1200 | 150  | 800 | 1200 | 150 | 800 | 1200 | mV   |
| t <sub>r</sub><br>t <sub>f</sub>       | Output Rise/Fall Times Q, Q<br>(20% – 80%)                     | 60           | 85  | 130  | 60   | 110 | 150  | 80  | 120 | 160  | ps   |

#### Table 7. AC CHARACTERISTICS $V_{CC} = 0 \text{ V}$ ; $V_{EE} = -3.0 \text{ V}$ to -5.5 V or $V_{CC} = 3.0 \text{ V}$ to 5.5 V; $V_{EE} = 0 \text{ V}$ (Note 13)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared

operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

13. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50  $\Omega$  to V<sub>CC</sub> – 2.0 V.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.



Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

## **ORDERING INFORMATION**

| Device         | Package   | Shipping <sup>†</sup> |  |  |  |  |
|----------------|-----------|-----------------------|--|--|--|--|
| MC100EP40DTG   | TSSOP-20* | 75 Units / Rail       |  |  |  |  |
| MC100EP40DTR2G | TSSOP-20* | 2500 / Tape & Reel    |  |  |  |  |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
\*This package is inherently Pb–Free.

#### **Resource Reference of Application Notes**

| AN1405/D  | - | ECL Clock Distribution Techniques           |
|-----------|---|---------------------------------------------|
| AN1406/D  | _ | Designing with PECL (ECL at +5.0 V)         |
| AN1503/D  | - | ECLinPS <sup>™</sup> I/O SPiCE Modeling Kit |
| AN1504/D  | _ | Metastability and the ECLinPS Family        |
| AN1568/D  | _ | Interfacing Between LVDS and ECL            |
| AN1672/D  | - | The ECL Translator Guide                    |
| AND8001/D | - | Odd Number Counters Design                  |
| AND8002/D | - | Marking and Date Codes                      |
| AND8020/D | _ | Termination of ECL Logic Devices            |
| AND8066/D | _ | Interfacing with ECLinPS                    |
| AND8090/D | _ | AC Characteristics of ECL Devices           |





| DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |  |  |  |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|
| DESCRIPTION:     | TSSOP-20 WB |                                                                                                                                                                                     | PAGE 1 OF 1 |  |  |  |  |  |
|                  |             |                                                                                                                                                                                     |             |  |  |  |  |  |

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the right or others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Phase Detectors/Shifters category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

TGP2105-SMTGP2100TGP2102MAPS-010163-TR1000HMC933LP4ETRHMC934LP5ETRHMC647LP6ETRMAPS-010166-001SMBHMC543ALC4BHMC642ALC5HMC647ALP6EHMC648ALP6EHMC936ALP6EHMC984LP4EMAPS-010146-TR0500MAPS-010163-001SMBMAPS-010163-TR0500MAPS-010164-TR0500MAPS-010166-TR0500HMC642ALC5TRHMC649ALP6EHMC984LP4ETRMAPS-010143-TR0500MAPS-010165-TR0500HMC649ALP6ETRMC100EP140DGMC100LVEL40DWGMCK12140DGCHP3015-QDGCMD176P4QPC2108HMC644ALC5MAPS-010145-TR0500MAPS-010144-TR0500TGP2108-SMMAPS-010143-001SMBMAPS-010144-001SMBMAPS-010145-001SMBMAPS-010146-001SMBMAPS-010164-001SMBHMC644ALC5TRMC100LVEL40DWR2GTGP2107-SMTGP2107TGP2109-SM