MC100EP40

3.3V / 5V ECL Differential Phase-Frequency Detector

Description

The MC100EP40 is a three-state phase-frequency detector intended for phase-locked loop applications which require a minimum amount of phase and frequency difference at lock. Advanced design significantly reduces the dead zone of the detector. For proper operation, the input edge rate of the R and V inputs should be less than 5 ns . The device is designed to work with a $3.3 \mathrm{~V} / 5 \mathrm{~V}$ power supply.

When Reference (R) and Feedback (FB) inputs are unequal in frequency and/or phase the differential UP (U) and DOWN (D) outputs will provide pulse streams which when subtracted and integrated provide an error voltage for control of a VCO.

When Reference (R) and Feedback (FB) inputs are 80 ps or less in phase difference, the Phase Lock Detect pin will indicate lock by a high state $\left(\mathrm{V}_{\mathrm{OH}}\right)$. The $\mathrm{V}_{\mathrm{TX}}\left(\mathrm{V}_{\mathrm{TR}}, \overline{\mathrm{V}_{\mathrm{TR}}}, \mathrm{V}_{\mathrm{TFB}}, \overline{\mathrm{V}_{\mathrm{TFB}}}\right)$ pins offer an internal termination network for 50Ω line impedance environment shown in Figure 2. An external sinking supply of $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$ is required on $\mathrm{V}_{\mathrm{TX}} \operatorname{pin}(\mathrm{s})$. If you short the two differential pins V_{TR} and $\overline{\mathrm{V}_{\mathrm{TR}}}$ (or $\mathrm{V}_{\mathrm{TFB}}$ and $\overline{\mathrm{V}_{\mathrm{TFB}}}$) together, you provide a 100Ω termination resistance. For more information on termination of logic devices, see AND8020.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a $0.01 \mu \mathrm{~F}$ capacitor and limit current sourcing or sinking to 0.5 mA . When not used, V_{BB} should be left open.

For more information on Phase Lock Loop operation, refer to AND8040.

Special considerations are required for differential inputs under No Signal conditions to prevent instability.

Features

- Maximum Frequency $>2 \mathrm{GHz}$ Typical
- Fully Differential
- Advanced High Band Output Swing of 400 mV
- Theoretical Gain $=1.11$
- $\mathrm{T}_{\text {rise }} 97$ ps Typical, $\mathrm{F}_{\text {fall }} 70$ ps Typical
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 5.5 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- NECL Mode Operating Range: $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -5.5 V
- 50Ω Internal Termination Resistor
- These are $\mathrm{Pb}-F r e e ~ D e v i c e s ~$

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Warning: All V_{CC} and $\mathrm{V}_{\text {EE }}$ pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 20-Lead Pinout (Top View)
Table 1. PIN DESCRIPTION

PIN	FUNCTION
U, \bar{J}	ECL Up Differential Outputs
D, D	ECL Down Differential Outputs
FB, FB	ECL Feedback Differential Inputs
R, R	ECL Reference Differential Inputs
PLD	ECL Phase Lock Detect Function
VTR	ECL Internal Termination for R
VTR	ECL Internal Termination for R
VTFB	ECL Internal Termination for $F B$
VTFB	ECL Internal Termination for FB
$V_{B B}$	Reference Voltage Output
$V_{C C}$	Positive Supply
$V_{\text {EE }}$	Negative Supply
NC	No Connect

Figure 2. Logic Diagram

MC100EP40

Table 2. ATTRIBUTES

Characteristics	Value	
Internal Input Pulldown Resistor	N/A	
Internal Input Pullup Resistor	N/A	
ESD ProtectionHuman Body Model Machine Model Charged Device Model	$\begin{gathered} >4 \mathrm{kV} \\ >100 \mathrm{~V} \\ >2 \mathrm{kV} \end{gathered}$	
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb Pkg	Pb-Free Pkg
TSSOP-20	Level 1	Level 3
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
Transistor Count	699 Devices	
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test		

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
$\mathrm{V}_{\text {CC }}$	PECL Mode Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		6	V
$\mathrm{V}_{\mathrm{EEE}}$	NECL Mode Power Supply	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		-6	V
V	PECL Mode Input Voltage NECL Mode Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{I}} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} \hline 6 \\ -6 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
I_{BB}	V_{BB} Sink/Source			± 0.5	mA
$\mathrm{T}_{\text {A }}$	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	$\begin{aligned} & 0 \text { lfpm } \\ & 500 \text { Ifpm } \end{aligned}$	$\begin{aligned} & \text { TSSOP-20 } \\ & \text { TSSOP-20 } \end{aligned}$	$\begin{aligned} & \hline 140 \\ & 100 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-20	23 to 41	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave SolderPb $\mathrm{Pb}-F r e e$			$\begin{aligned} & 265 \\ & 265 \end{aligned}$	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. 100EP DC CHARACTERISTICS, PECL $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 2)

	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
Symbol		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{l}_{\text {EE }}$	Power Supply Current	100	128	160	100	130	160	110	140	170	mA
V_{OH}	Output HIGH Voltage (Note 3)	2225	2350	2475	2275	2400	2525	2300	2425	2550	mV
V_{OL}	$\begin{array}{lr}\text { Output LOW Voltage (Note 3) } & \text { U, D, B, B } \\ & \text { PLD }\end{array}$	$\begin{aligned} & \hline 1775 \\ & 1305 \end{aligned}$	$\begin{aligned} & \hline 1900 \\ & 1480 \end{aligned}$	$\begin{aligned} & 2025 \\ & 1605 \end{aligned}$	$\begin{aligned} & \hline 1800 \\ & 1305 \end{aligned}$	$\begin{aligned} & \hline 1925 \\ & 1480 \end{aligned}$	$\begin{aligned} & \hline 2050 \\ & 1605 \end{aligned}$	$\begin{aligned} & 1825 \\ & 1305 \end{aligned}$	$\begin{aligned} & \hline 1950 \\ & 1480 \end{aligned}$	$\begin{aligned} & 2075 \\ & 1605 \end{aligned}$	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	2075		2420	2075		2420	2075		2420	mV
V_{IL}	Input LOW Voltage (Single-Ended)	1305		1675	1305		1675	1305		1675	mV
$\mathrm{V}_{\text {BB }}$	Output Voltage Reference	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4)	2.0		3.3	2.0		3.3	2.0		3.3	V
$I_{1 H}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	-150			-150			-150			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
2. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V .
3. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
4. $\mathrm{V}_{I H C M R}$ min varies $1: 1$ with V_{EE}, $\mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

Table 5. 100EP DC CHARACTERISTICS, PECL $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 5)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current (Note 6)	100	128	160	100	130	160	110	140	170	mA
V_{OH}	Output HIGH Voltage (Note 7)	3925	4050	4175	3975	4100	4225	4000	4125	4250	mV
V_{OL}	Output LOW Voltage (Note 7) U, U, B, B PLD	$\begin{aligned} & \hline 3475 \\ & 3005 \end{aligned}$	$\begin{aligned} & \hline 3600 \\ & 3180 \end{aligned}$	$\begin{aligned} & 3725 \\ & 3305 \end{aligned}$	$\begin{aligned} & \hline 3500 \\ & 3005 \end{aligned}$	$\begin{aligned} & \hline 3625 \\ & 3180 \end{aligned}$	$\begin{aligned} & \hline 3750 \\ & 3305 \end{aligned}$	$\begin{aligned} & 3525 \\ & 3005 \end{aligned}$	$\begin{aligned} & 3650 \\ & 3180 \end{aligned}$	$\begin{aligned} & 3775 \\ & 3305 \end{aligned}$	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	3775		4120	3775		4120	3775		4120	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	3005		3375	3005		3375	3005		3375	mV
$\mathrm{V}_{\text {BB }}$	Output Voltage Reference	3475	3575	3675	3475	3575	3675	3475	3575	3675	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 8)	2.0		5.0	2.0		5.0	2.0		5.0	V
I_{IH}	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	-150			-150			-150			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
5. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V .
6. For $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)>3.3 \mathrm{~V}, 5 \Omega$ to 10Ω in line with V_{EE} required for maximum thermal protection at elevated temperatures. Recommend $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ operation at $\leq 3.3 \mathrm{~V}$.
7. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
8. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with V_{EE}, $\mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

Table 6. 100EP DC CHARACTERISTICS, NECL $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.5 \mathrm{~V}$ to -3.0 V (Note 9)

	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
Symbol		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current (Note 10)	100	128	160	100	130	160	110	140	170	mA
V_{OH}	Output HIGH Voltage (Note 11)	-1075	-950	-825	-1025	-900	-775	-1000	-875	-750	mV
V_{OL}	Output LOW Voltage (Note 11) $\begin{array}{r}\text { U, U, B, B } \\ \text { PLD }\end{array}$	$\begin{aligned} & -1525 \\ & -1995 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline-1400 \\ -1820 \end{array}$	$\begin{aligned} & -1275 \\ & -1695 \end{aligned}$	$\begin{aligned} & -1500 \\ & -1995 \end{aligned}$	$\begin{aligned} & -1375 \\ & -1820 \end{aligned}$	$\begin{aligned} & -1250 \\ & -1695 \end{aligned}$	$\begin{aligned} & -1475 \\ & -1995 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline-1350 \\ -1820 \end{array}$	$\begin{aligned} & -1225 \\ & -1695 \end{aligned}$	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	-1995		-1625	-1995		-1625	-1995		-1625	mV
$\mathrm{V}_{\text {BB }}$	Output Voltage Reference	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 12)	$\mathrm{V}_{\mathrm{EE}}+2.0$		0.0	$\mathrm{V}_{\mathrm{EE}}+2.0$		0.0	$\mathrm{V}_{\mathrm{EE}}+2.0$		0.0	V
I_{H}	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current	-150			-150			-150			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
9. Input and output parameters vary $1: 1$ with V_{CC}.
10. For $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)>3.3 \mathrm{~V}, 5 \Omega$ to 10Ω in line with V_{EE} required for maximum thermal protection at elevated temperatures. Recommend $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ operation at $\leq 3.3 \mathrm{~V}$.
11. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
12. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\text {EE }}, \mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

Table 7. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -5.5 V or $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 5.5 V ; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 13)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} \& \multirow[b]{2}{*}{Characteristic} \& \multicolumn{3}{|c|}{-40 \({ }^{\circ} \mathrm{C}\)} \& \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} \& \multicolumn{3}{|c|}{\(85^{\circ} \mathrm{C}\)} \& \multirow[b]{2}{*}{Unit} \\
\hline \& \& Min \& Typ \& Max \& Min \& Typ \& Max \& Min \& Typ \& Max \& \\
\hline \(\mathrm{f}_{\text {max }}\) \& Maximum Frequency (Figure 3) \& \& >2 \& \& \& >2 \& \& \& >2 \& \& GHz \\
\hline \[
\begin{aligned}
\& \hline \begin{array}{l}
\text { tpLH, } \\
\text { tpHL }
\end{array}
\end{aligned}
\] \& \begin{tabular}{lr}
Propagation Delay to \& FB to D/U \\
Output Differential \& R to D/U
\end{tabular} \& 400 \& 525 \& 700 \& 410 \& 550 \& 750 \& 450 \& 575 \& 775 \& ps \\
\hline \(\mathrm{t}_{\text {JITTER }}\) \& Random Clock Jitter (Figure 3) \& \& 0.2 \& < 1 \& \& 0.2 \& <1 \& \& 0.2 \& < 1 \& ps \\
\hline \(\mathrm{V}_{\mathrm{PP}}\) \& Input Voltage Swing (Differential Configuration) \& 150 \& 800 \& 1200 \& 150 \& 800 \& 1200 \& 150 \& 800 \& 1200 \& mV \\
\hline tr

t_{f} \& $\underset{\substack{\text { Output Rise/Fall Times } \\(20 \%-80 \%)}}{ } \quad$ Q, \bar{Q} \& 60 \& 85 \& 130 \& 60 \& 110 \& 150 \& 80 \& 120 \& 160 \& ps

\hline
\end{tabular}

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
13 . Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Figure 3. $\mathrm{F}_{\text {max }} / \mathrm{Jitter} @ \mathbf{2 5}^{\circ} \mathrm{C}$

Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

MC100EP40

ORDERING INFORMATION

Device	Package	Shipping †
MC100EP40DTG	TSSOP-20*	75 Units / Rail
MC100EP40DTR2G	TSSOP-20*	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently $\mathrm{Pb}-$ Free.

Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS ${ }^{\text {m }}$ I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

TSSOP-20 WB
CASE 948E
ISSUE D
DATE 17 FEB 2016

SCALE 2:1

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
CONTROLLING DIMENSION: MILLIMETER
2. DIMENSION A DOES NOT INCLUDE MOLD

FLASH, PROTRUSIONS OR GATE BURRS.
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NO
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED $0.25(0.010)$ PER SIDE
5. DIMENSION K DOES NOT INCLUDE

DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	6.40	6.60	0.252	0.260
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.27	0.37	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252 BSC	
M	0	0°	8°	0

GENERIC MARKING DIAGRAM* НРННННННН

	XXXX
	XXXX
	ALYW.
\bigcirc	-

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.
DIMENSIONS: MILLIMETERS

| DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-20 WB | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Phase Detectors/Shifters category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
TGP2105-SM TGP2100 TGP2102 MAPS-010163-TR1000 HMC933LP4ETR HMC934LP5ETR HMC647LP6ETR MAPS-010166-001SMB HMC543ALC4B HMC642ALC5 HMC647ALP6E HMC648ALP6E HMC936ALP6E HMC984LP4E MAPS-010146-TR0500 MAPS-010163-001SMB MAPS-010163-TR0500 MAPS-010164-TR0500 MAPS-010166-TR0500 HMC642ALC5TR HMC649ALP6E HMC984LP4ETR MAPS-010143-TR0500 MAPS-010165-TR0500 HMC649ALP6ETR MC100EP140DG MC100LVEL40DWG MCK12140DG CHP3015-QDG CMD176P4 QPC2108 HMC644ALC5 MAPS-010145-TR0500 MAPS-010144-TR0500 TGP2108-SM MAPS-010143-001SMB MAPS-010144-001SMB MAPS-010145-001SMB MAPS-010146-001SMB MAPS-010164-001SMB HMC644ALC5TR MC100LVEL40DWR2G TGP2107-SM TGP2107 TGP2109 TGP2109-SM

