ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

3.3 V/5 V 8-Bit CMOS/ECL/TTL Data Input Parallel/Serial Converter

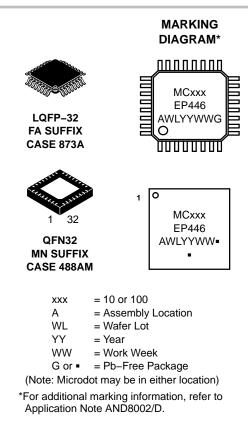
Description

The MC10/100EP446 is an integrated 8-bit parallel to serial data converter. The device is designed with unique circuit topology to operate for NRZ data rates up to 3.2 Gb/s. The conversion sequence from parallel data into a serial data stream is from bit D0 to D7. The parallel input pins D0-D7 are configurable to be threshold controlled by CMOS, ECL, or TTL level signals. The serial data rate output can be selected at internal clock data rate or twice the internal clock data rate using the CKSEL pin.

Control pins are provided to reset (SYNC) and disable internal clock circuitry (CKEN). In either CKSEL modes, the internal flip–flops are triggered on the rising edge for CLK and the multiplexers are switched on the falling edge of CLK, therefore, all associated specification limits are referenced to the negative edge of the clock input. Additionally, V_{BB} pin is provided for single–ended input condition.

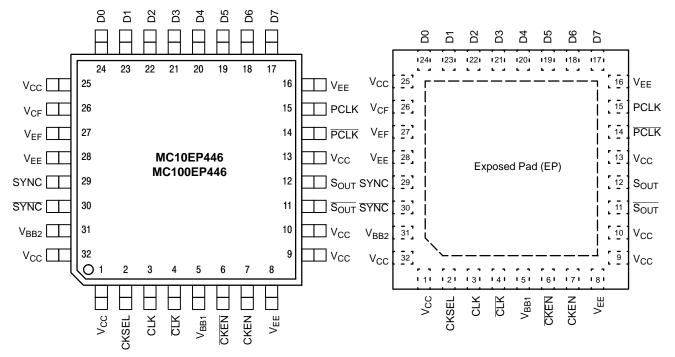
The 100 Series devices contain temperature compensation network.

Features


- 3.2 Gb/s Typical Data Rate Capability
- Differential Clock and Serial Outputs
- V_{BB} Output for Single-ended Input Applications
- Asynchronous Data Reset (SYNC)
- PECL Mode Operating Range:

 $V_{CC} = 3.0 \text{ V}$ to 5.5 V with $V_{EE} = 0 \text{ V}$

- NECL Mode Operating Range: $V_{CC} = 0$ V with $V_{EE} = -3.0$ V to -5.5 V
 - $v_{\rm CC} = 0$ v with $v_{\rm EE} = -3.0$
- Open Input Default State
- Safety Clamp on Inputs
- Parallel Interface Can Support PECL, TTL or CMOS
- These Devices are Pb-Free and are RoHS Compliant



http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 18 of this data sheet.

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 2. QFN-32 Pinout (Top View)

Table 1. PIN DESCRIPTION

PIN	FUNCTION	
D0*-D7*	ECL, CMOS, or TTL Parallel Data Input	
S _{OUT} , S _{OUT}	ECL Differential Serial Data Output	
CLK*, CLK*	ECL Differential Clock Input	
PCLK, PCLK	ECL Differential Parallel Clock Output	
SYNC*, SYNC**	ECL Conversion Synchronizing Differential Input (Reset)***	
CKSEL*	ECL Clock Input Selector	
CKEN*, CKEN*	ECL Clock Enable Differential Input	
V _{CF}	ECL, CMOS, or TTL Input Selector	
V _{EF}	ECL Reference Mode Connection	
V _{BB1} , V _{BB2}	Reference Voltage Output	
V _{CC}	Positive Supply	
V _{EE}	Negative Supply	

* Pins will default LOW when left open.

**Pins will default HIGH when left open.

***The rising edge of SYNC will asynchronously reset the internal circuitry. The falling edge of the SYNC followed by the falling edge of CLK initiates the conversion process synchronously on the next rising edge of CLK.

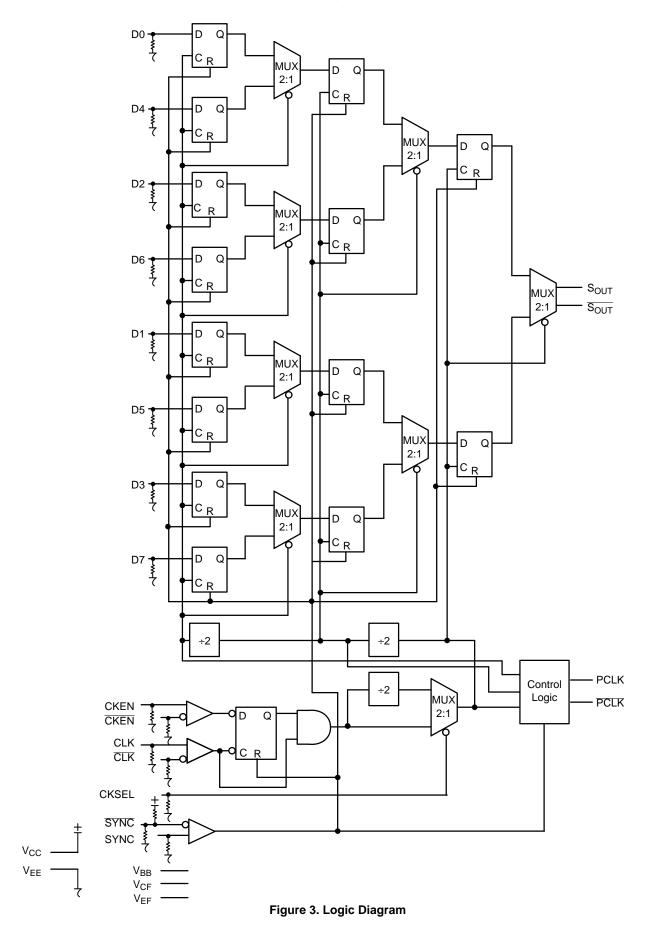
Figure 1. LQFP-32 Pinout (Top View)

Table 2. TRUTH TABLE

		Function
Pin	HIGH	LOW
CKSEL	$S_{OUT}: PCLK = 8:1$ $CLK: S_{OUT} = 1:1$ $CLK / / / / / / / / / / / / / / / / / / /$	S _{OUT} : PCLK = 8:1 CLK: S _{OUT} = 1:2 CLK S _{OUT} X X X
CKEN	Synchronously Disables Normal Parallel to Serial Conversion	Synchronously Enables Normal Parallel to Serial Conversion
SYNC	Asynchronously Resets Internal Flip–Flops*	Synchronous Enable

*The rising edge of SYNC will asynchronously reset the internal circuitry. The falling edge of the SYNC followed by the falling edge of CLK initiates the conversion process synchronously on the next rising edge of CLK.

Table 3. INPUT VOLTAGE LEVEL SELECTION TABLE


Input Function	Connect To V _{CF} Pin
ECL Mode	V _{EF} Pin
CMOS Mode	No Connect
TTL Mode*	$1.5 \text{ V} \pm 100 \text{ mV}$

*For TTL Mode, if no external voltage can be provided, the reference voltage can be provided by connecting the appropriate resistor between V_{CF} and V_{EE} pins.

Table 4. DATA INPUT OPERATING VOLTAGE TABLE

Power Supply	I	Data Inputs (D [0:7])									
(V _{CC} ,V _{EE})	CMOS	TTL	PECL	NECL							
PECL	\checkmark	\checkmark	\checkmark	N/A							
NECL	N/A	N/A	N/A	\checkmark							

Power Supply	Resistor Value 10% (Tolerance)
3.3 V	1.5 kΩ
5.0 V	500 Ω

Table 5. ATTRIBUTES

Chara	cteristics	Value				
Internal Input Pulldown Resist	75 kΩ					
Internal Input Pullup Resistor	37.5 kΩ					
ESD Protection	> 10	2 kV 00 V 2 kV				
Moisture Sensitivity, Indefinite	Time Out of Drypack (Note 1)	Pb Pkg	Pb-Free Pkg			
	LQFP-32 QFN-32	Level 2 –	Level 2 Level 1			
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in				
Transistor Count	962 Devices					
Meets or exceeds JEDEC Sp	ec EIA/JESD78 IC Latchup Test	-				

1. For additional information, see Application Note AND8003/D.

Table 6. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	$V_{EE} = 0 V$		6	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V
l _{out}	Output Current	Continuous Surge		50 100	mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	LQFP-32 LQFP-32	80 55	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	LQFP-32	12 to 17	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	QFN-32 QFN-32	31 27	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	2S2P	QFN-32	12	°C/W
T _{sol}	Wave Solder Pb–Free	<2 to 3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	90	110	140	90	110	140	95	115	145	mA
V _{OH}	Output HIGH Voltage (Note 3)	2165	2290	2415	2230	2355	2480	2290	2415	2540	mV
V _{OL}	Output LOW Voltage (Note 3)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
V _{IH}	Input HIGH Voltage (Single–Ended) CMOS PECL TTL	2000 2090 2000		3300 3300 3300	2000 2155 2000		3300 3300 3300	2000 2215 2000		3300 3300 3300	mV
VIL	Input LOW Voltage (Single–Ended) CMOS PECL TTL	0 1365 0		800 1690 800	0 1460 0		800 1755 800	0 1490 0		800 1815 800	mV
V_{BB}	Output Voltage Reference	1790	1840	1990	1855	1905	2055	1915	1965	2115	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Dif- ferential Configuration) (Note 4)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current (All Except SYNC, SYNC) SYNC, SYNC	0.5 -150		0.5	0.5 -150		0.5	0.5 -150		0.5	μΑ

Table 7. 10EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 2)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V.
 All loading with 50 Ω to V_{CC} - 2.0 V.
 V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	90	110	140	90	110	140	95	115	145	mA
V _{OH}	Output HIGH Voltage (Note 6)	3865	3950	4115	3930	4055	4180	3990	4115	4240	mV
V _{OL}	Output LOW Voltage (Note 6)	3065	3190	3315	3130	3255	3380	3190	3315	3440	mV
V _{IH}	Input HIGH Voltage (Single–Ended) CMOS PECL TTL	3500 3790 2000		5000 5000 5000	3500 3855 2000		5000 5000 5000	3500 3915 2000		5000 5000 5000	mV
VIL	Input LOW Voltage (Single–Ended) CMOS PECL TTL	0 3065 0		1500 3390 800	0 3130 0		1500 3455 800	0 3190 0		1500 3915 800	mV
V_{BB}	Output Voltage Reference	3490	3540	3690	3555	3605	3755	3615	3665	3815	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Dif- ferential Configuration) (Note 7)	2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current (All Except SYNC, <u>SYNC</u>) SYNC, <u>SYNC</u>	0.5 -150		0.5	0.5 -150		0.5	0.5 -150		0.5	μΑ

Table 8. 10EP DC CHARACTERISTICS, PECL V_{CC} = 5.0 V, V_{EE} = 0 V (Note 5)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +2.0 V to -0.5 V.
 All loading with 50 Ω to V_{CC} - 2.0 V.
 V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			–40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
I _{EE}	Power Supply Current	90	110	140	90	110	140	95	115	145	mA	
V _{OH}	Output HIGH Voltage (Note 9)	-1135	-1010	-885	-1070	-945	-820	-1010	-885	-760	mV	
V _{OL}	Output LOW Voltage (Note 9)	-1935	-1810	-1685	-1870	-1745	-1620	-1810	-1685	-1560	mV	
V _{IH}	Input HIGH Voltage (Single-Ended)	-1210		-885	-1145		-820	-1085		-760	mV	
V _{IL}	Input LOW Voltage (Single-Ended)	-1935		-1610	-1870		-1545	-1810		-1485	mV	
V_{BB}	Output Voltage Reference	-1510	-1460	-1310	-1445	-1395	-1245	-1385	-1335	-1185	mV	
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 10)	V _{EE} +2.0		0.0	V _{EE} +2.0		0.0 V _{EE}		+2.0	0.0	V	
I _{IH}	Input HIGH Current			150			150			150	μΑ	
I _{IL}	Input LOW Current (All Except SYNC, <u>SYNC</u>) SYNC, <u>SYNC</u>	0.5 -150		0.5	0.5 -150		0.5	0.5 -150		0.5	μΑ	

Table 9. 10EP DC CHARACTERISTICS, NECL V_{CC} = 0 V, V_{EE} = -5.5 V to -3.0 V (Note 8)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

8. Input and output parameters vary 1:1 with V_{CC} .

9. All loading with 50 Ω to V_{CC} – 2.0 V.

10. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

Table 10. 100EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 11)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	90	110	130	90	110	130	95	115	135	mA
V _{OH}	Output HIGH Voltage (Note 12)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 12)	1305	1480	1605	1305	1480	1605	1305	1480	1605	mV
V _{IH}	Input HIGH Voltage (Single–Ended) CMOS PECL TTL	2000 2075 2000		3300 3300 3300	2000 2075 2000		3300 3300 3300	2000 2075 2000		3300 3300 3300	mV
V _{IL}	Input LOW Voltage (Single–Ended) CMOS PECL TTL	0 1305 0		800 1675 800	0 1305 0		800 1675 800	0 1305 0		800 1675 800	mV
V_{BB}	Output Voltage Reference	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

11. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V.

12. All loading with 50 Ω to V_{CC} – 2.0 V. 13. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			−40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах	Unit
I _{EE}	Power Supply Current	90	110	130	90	110	130	95	115	135	mA
V _{OH}	Output HIGH Voltage (Note 15)	3855	3980	4105	3855	3980	4105	3855	3980	4105	mV
V _{OL}	Output LOW Voltage (Note 15)	3005	3180	3305	3005	3180	3305	3005	3180	3305	mV
V _{IH}	Input HIGH Voltage (Single-Ended) CMOS PECL TTL	3500 3775 2000		5000 5000 5000	3500 3775 2000		5000 5000 5000	3500 3775 2000		5000 5000 5000	mV
VIL	Input LOW Voltage (Single-Ended) CMOS PECL TTL	0 3005 0		1500 3375 800	0 3005 0		1500 3375 800	0 3005 0		1500 3375 800	mV
V_{BB}	Output Voltage Reference	3475	3575	3675	3475	3575	3675	3475	3575	3675	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 16)	2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current	0.5			0.5			0.5			μΑ

Table 11. 100EP DC CHARACTERISTICS, PECL V_{CC} = 5.0 V, V_{EF} = 0 V (Note 14)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

14. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +2.0 V to –0.5 V.

15. All loading with 50 Ω to V_{CC} – 2.0 V. 16. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 12. 100EP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$, $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 17)

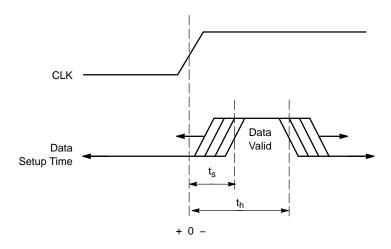
		−40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	90	110	130	90	110	130	95	115	135	mA
V _{OH}	Output HIGH Voltage (Note 18)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 18)	-1995	-1820	-1695	-1995	-1820	-1695	-1995	-1820	-1695	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1995		-1625	-1995		-1625	-1995		-1625	mV
V_{BB}	Output Voltage Reference	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 19)	V _{EE} +2.0		0.0	V _{EE} +2.0		0.0	V _{EE} +2.0		0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

17. Input and output parameters vary 1:1 with V_{CC}.

18. All loading with 50 Ω to V_{CC} – 2.0 V.

19. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.


		–40°C			25°C			85°C				
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (Figure 15) CKSEL High CKSEL Low			3.4 1.7		3.2 1.6	3.4 1.7		3.2 1.6	3.4 1.7		GHz
t _{PLH} , t _{PHL}		Differential _K TO S _{OUT} , _K TO PCLK	650 700	750 800	850 900	700 750	800 850	900 950	725 775	850 900	975 1025	ps
		_k to s _{out} , _k to pclk	775 850	875 950	975 1050	825 900	925 1000	1025 1100	875 950	1000 1075	1125 1200	ps
t _S	Setup Time D to CLK+ SYNC- to CLK- CKEN+ to CLK-	(Figure 4) (Figure 5) (Figure 6)	-375 200 70	-425 140 40		-400 200 70	-450 140 40		-450 200 70	-500 140 40		ps
t _h	Hold Time D to CLK+ SYNC- to CLK- CLK- to CKEN-	(Figure 4) (Figure 6)	-525 0 75	-575 45		-550 0 75	-600 45		-600 0 75	-650 45		ps
t _{pw}	Minimum Pulse Width (Note Data (D0–D7) SYNC CKEN	e 22)	150 200 145			150 200 145			150 200 145			ps
t _{JITTER}	Random Clock Jitter (RMS) ≤ f _{max} Typ			0.2	< 1		0.2	< 1		0.2	< 1	ps
V _{PP}	Input Differential Voltage Sv (Note 21)	150	800	1200	150	800	1200	150	800	1200	mV	
t _r t _f	Output Rise/Fall Times (20% – 80%)	S _{OUT}	50	100	150	70	120	170	90	140	190	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

20. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V.

21. VPP(min) is the minimum input swing for which AC parameters are guaranteed.

22. The minimum pulse width is valid only if the setup and hold times are respected.

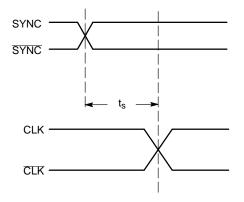


Figure 5. Setup Time for SYNC

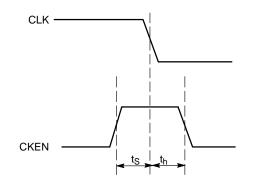


Figure 6. Setup and Hold Time for CKEN

APPLICATION INFORMATION

The MC10/100EP446 is an integrated 8:1 parallel to serial converter. An attribute for EP446 is that the parallel inputs D0–D7 (Pins 17 – 24) can be configured to accept either CMOS, ECL, or TTL level signals by a combination of interconnects between V_{EF} (Pin 27) and V_{CF} (Pin 26) pins. For CMOS input levels, leave V_{EF} and V_{CF} open. For ECL operation, short V_{CF} and V_{EF} (Pins 26 and 27). For TTL operation, connect a 1.5 V supply reference to V_{CF} and leave the V_{EF} pin open. The 1.5 V reference voltage to V_{CF} pin can be accomplished by placing a 1.5 k Ω or 500 Ω between V_{CF} and V_{EF} for 3.3 V or 5.0 V power supplies, respectively.

Note: all pins requiring ECL voltage inputs must have a 50 Ω terminating resistor to V_{TT} (V_{TT} = V_{CC} - 2.0 V).

The CKSEL input (Pin 2) is provided to enable the user to select the serial data rate output between internal clock data rate or twice the internal clock data rate. For CKSEL LOW operation, the time from when the parallel data is latched ① to when the data is seen on the S_{OUT} ② is on the falling edge of the 7th clock cycle plus internal propagation delay (Figure 7). Note the PCLK switches on the falling edge of CLK.

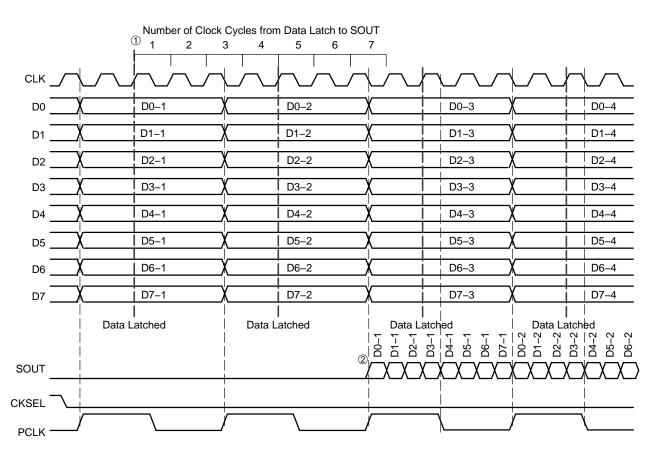


Figure 7. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL LOW

Similarly, for CKSEL HIGH operation, the time from when the parallel data is latched ① to when the data is seen on the S_{OUT} ② is on the rising edge of the 14th clock cycle plus internal propagation delay (Figure 8). Furthermore, the PCLK switches on the rising edge of CLK.

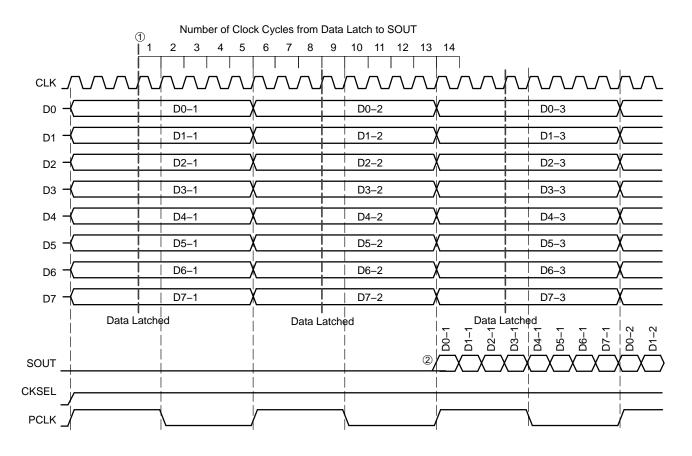


Figure 8. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL HIGH

The device also features a differential SYNC input (Pins 29 and 30), which asynchronously reset all internal flip–flops and clock circuitry on the rising edge of SYNC. The release of SYNC is a synchronous process, which ensures that no runt serial data bits are generated. The falling edge of the SYNC followed by a falling edge of CLK initiates the start of the conversion process on the next rising edge of CLK (Figures 9 and 10). As shown in the figures below, the device will start to latch the parallel input data after the a falling edge of SYNC ①, followed by the falling edge CLK ②, on the next rising of edge of CLK ③ for CKSEL LOW

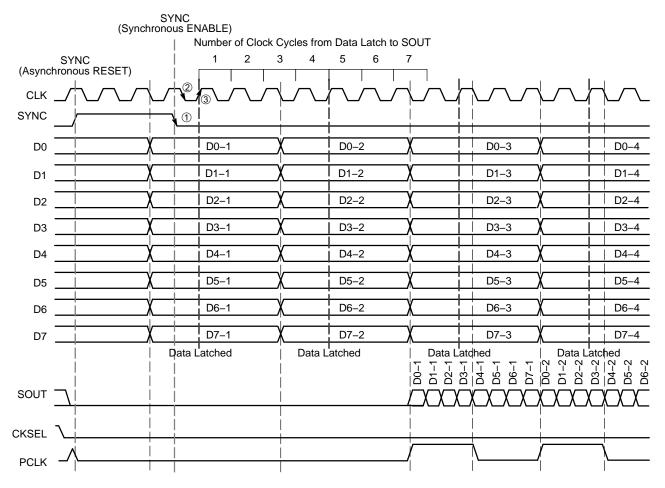


Figure 9. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL LOW and SYNC

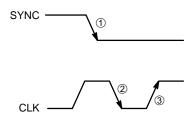


Figure 10. Synchronous Release of SYNC for CKSEL LOW

For CKSEL HIGH, as shown in the timing diagrams below, the device will start to latch the parallel input data after the falling edge of SYNC ①, followed by the falling edge CLK ②, on the second rising edge of CLK ③ (Figures 11 and 12).

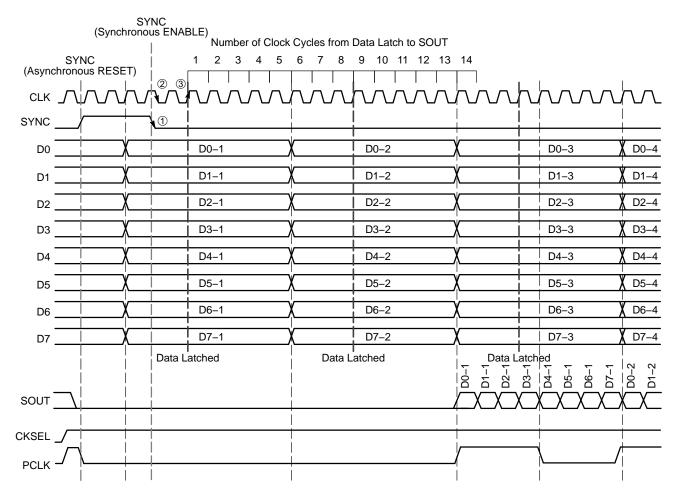


Figure 11. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL HIGH and SYNC

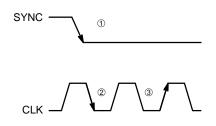


Figure 12. Synchronous Release of SYNC for CKSEL HIGH

The differential synchronous CKEN inputs (Pins 6 and 7), disable the internal clock circuitry. The synchronous CKEN will suspend all of the device activities and prevent runt pulses from being generated. The rising edge of CKEN followed by the falling edge of CLK will suspend all activities. The falling edge of CKEN followed by the falling edge of CLK will resume all activities (Figure 13).

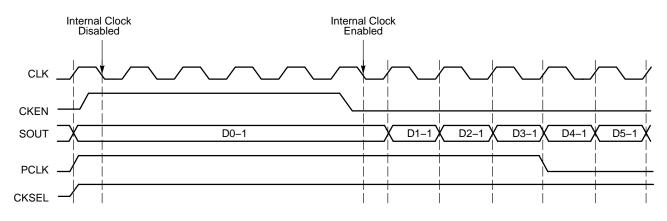


Figure 13. Timing Diagram with CKEN with CKSEL HIGH

The differential PCLK output (Pins 14 and 15) is a word framer and can help the user synchronize the serial data output, S_{OUT} (Pins 11 and 12), in their applications. Furthermore, PCLK can be used as a trigger for input parallel data (Figure 14).

An internally generated voltage supply, the V_{BB} pin, is available to this device only. For single–ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open. Also, both outputs of the differential pair must be terminated (50 Ω to V_{TT}) even if only one output is used.

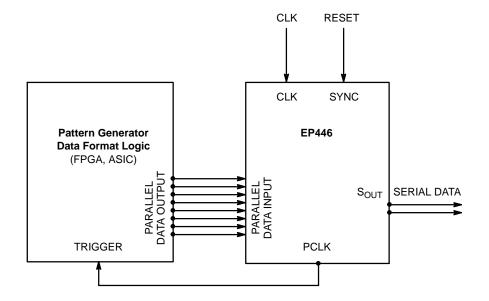


Figure 14. PCLK as Trigger Application

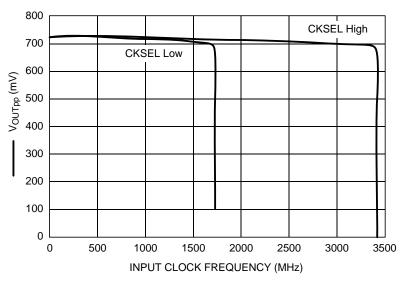


Figure 15. Typical V_{OUTPP} versus Input Clock Frequency, $25^{\circ}C$

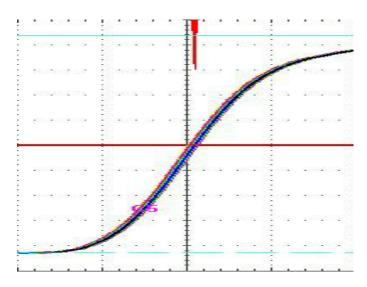


Figure 16. SOUT System Jitter Measurement (Condition: 3.4 GHz input frequency, CKSEL HIGH, BEOFE32 bit pattern on SOUT

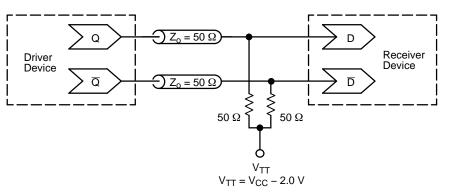


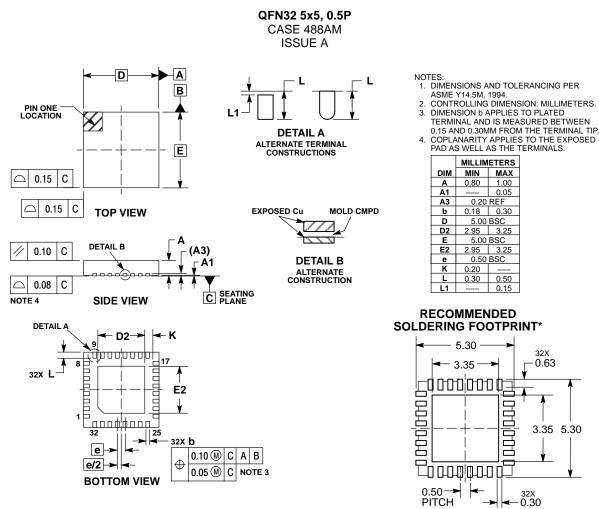
Figure 17. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device Package		Shipping [†]					
MC10EP446FAG	LQFP-32	250 Units / Tray					
MC10EP446FAR2G	(Pb-Free)	2000 / Tape & Reel					
MC10EP446MNG	QFN-32	74 Units / Rail					
MC100EP446MNG	(Pb-Free)	74 Units / Rail					
MC100EP446FAG	LQFP-32	250 Units / Tray					
MC100EP446FAR2G	(Pb-Free)	2000 / Tape & Reel					
MC10EP446MNR4G	QFN-32	1000 / Tape & Reel					
MC100EP446MNR4G	(Pb-Free)	1000 / Tape & Reel					

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes


AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	_	Designing with PECL (ECL at +5.0 V)
AN1503/D	_	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	_	Metastability and the ECLinPS Family
AN1568/D	_	Interfacing Between LVDS and ECL
AN1672/D	_	The ECL Translator Guide
AND8001/D	_	Odd Number Counters Design
AND8002/D	_	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	_	Interfacing with ECLinPS
AND8090/D	_	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

http://onsemi.com 19

PACKAGE DIMENSIONS

DIMENSION: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC)

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death massociated with such unintended or unauthorized applicatio copyright as negligent regarding the design or manufacture of the pert. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright awards and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Serial to Parallel Logic Converters category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

MC74HCT595ADTR2G NLV74HC164ADR2G HV5122PG-G HV5122PJ-G HV5222PJ-G HV5308PG-B-G HV5408PG-B-G HV5408PJ-B-G HV5530PG-G HV5530PJ-G HV5630PJ-G HV57009PG-G HV574PG-G HV5522PG-G MC100EP445FAG MC100EP445MNG MC100EP446MNG MC10EP445FAG SN74LV8153NE4 SN74LV8153QPWRG4Q1 HV5622PJ-G HV5308PJ-B-G-M903 HV5308PG-B-G-M919 HV528K6-G MC74HCT595ADG HV57908PG-G HV507PG-G HV5622PG-G HV5222PG-G HV5522PJ-G HV57708PG-G HV5308PJ-B-G SN74LV8153N SN74LV8153PW SN74LV8153PWR SN74LV8153QPWRQ1